点击切换搜索课件文库搜索结果(111)
文档格式:PDF 文档大小:1.42MB 文档页数:55
第一节 细胞膜的基本结构和物质转运功能 一、膜的化学组成和分子结构 (一)脂质双分子层 (二)细胞膜蛋白质 (三)细胞膜糖类 二、细胞膜的跨膜物质转运功能 (一)单纯扩散 (二)易化扩散 (三)主动转运 (四)出胞与入胞式物质转运 第二节 细胞的跨膜信号传递功能 一、由具有特异感受结构的通道蛋白质完成的跨膜信号传递 (一)化学门控通道 (二)电压门控通道 (三)机械门控通道 二、由膜的特异受体蛋白质、G-蛋白和膜的效应器酶组成的跨膜信号传递系统 第三节 细胞的兴奋性和生物电现象 一、兴奋性和刺激引起兴奋的条件 (一)兴奋性和兴奋含义及其变迁 (二)刺激引起兴奋的条件和阈刺激 (三)组织兴奋及其恢复过程中兴奋性的变化 二、细胞的生物电现象及其产生机制 (一)生物电现象的观察和记录方法 (二)细胞的静息电位和动作电位 (三)生物电现象的产生机制 三、兴奋的引起和兴奋的传导机制 (一)阈电位和锋电位的引起 (二)局部兴奋及其特性 (三)兴奋在同一细胞上的传导机制 第四节 肌细胞的收缩功能 一、神经-骨骼肌接头处的兴奋传递 二、骨骼肌细胞的微细结构 (一)肌原纤维和肌小节 (二)肌管系统 三、骨骼肌的收缩机制和兴奋-收缩耦联 (一)肌丝的分子组成和横桥的运动 (二)骨骼肌的兴奋-收缩耦联 四、骨骼肌收缩的外部表现和力学分析 (一)前负荷或肌肉初长度对肌肉收缩的影响枣长度-张力曲线 (二)肌肉后负荷对肌肉收缩的影响-张力-速度曲线 (三)肌肉收缩能力的改变对肌肉收缩的影响 (四)肌肉的单收缩和单收缩的复合 五、平滑肌的结构和生理特性 (一)平滑肌的微细结构和收缩机制 (二)平滑肌在功能上的分类 (三)平滑肌活动的控制和调节
文档格式:PPT 文档大小:7.31MB 文档页数:110
• 1. 理解表面张力(单位表面自由能)的概念。 • 2. 理解弯曲液面的附加压力的概念;掌握(Young-Laplace)方程及其应用。 • 3. 理解弯曲液面的饱和蒸气压与平面液体的饱和蒸气压的不同;掌握Kelvin方程及其应用。 • 4. 了解润湿作用;理解接触角和Young方程;了解毛细管现象。 • 5. 理解亚稳状态及新相生成的热力学和动力学。 • 6. 了解溶液界面上的吸附现象,正吸附和负吸附,吉布斯模型及表面过剩物质的量的概念; 理解 Gibbs方程。 • 7. 了解表面活性剂的结构特征及其应用。 • 8. 理解物理吸附和化学吸附的意义和区别。 • 9. 掌握 Langmuir单分子层吸附理论和吸附定温式及其应用
文档格式:PDF 文档大小:1.37MB 文档页数:10
为探究新型混凝土受硫酸盐侵蚀后的力学性能,采用质量分数为5%的硫酸盐溶液全浸泡加速侵蚀法,对11组聚丙烯纤维混凝土(PC)试块、11组聚丙烯纤维锂渣混凝土(PLiC)试块、8根PC大偏心受压柱和8根PLiC大偏心受压柱进行侵蚀试验,得到了不同侵蚀时间下混凝土的力学性能。基于分形理论分析了试块及构件破坏时表面裂缝分布的分形特征,详细讨论了试块及构件表面裂缝分形维数与其侵蚀时间、抗压强度、极限承载力之间的关系。研究表明,PC和PLiC立方体抗压强度随侵蚀天数先增加后降低,在120 d达到最大;试块及构件破坏时表面裂缝分布具有分形特征,试块表面裂缝分形维数随侵蚀天数的增加呈现先增加后减少再增加的规律,随试块抗压强度的提高而减少;PC及PLiC混凝土大偏心柱极限承载力随侵蚀天数的增加先增加后减少,锂渣的掺入可以提高聚丙烯纤维混凝土柱的抗硫酸盐侵蚀能力,构件破坏时表面裂缝分形维数随硫酸盐侵蚀天数呈现震荡上升的趋势;因此混凝土表面裂缝的分形特征可作为判定构件损伤程度的指标之一,可为今后对在役混凝土结构承载力和寿命预测提供参考
文档格式:PPT 文档大小:145.5KB 文档页数:54
前已述及,当先导化合物的结构确定以后,需要进行结构和活性的优化, 这是由于先导化合物只提供一种具有特定药理作用的新结构类型,作为线 索物质,往往由于在药学、药效学、药代动力学的缺点或不足,存在不良 反应而不能临床使用,需要对先导物进行结构改造或修饰,以优化上述性 质。迄今所用的优化方法大都是经验性的操作,通过这样的化学操作和生 物评价,既可能发现出决定药理作用的药效团,也会得到在药效的特异性
文档格式:PDF 文档大小:650.86KB 文档页数:9
目前液压凿岩机冲击器结构参数设计,一般仅考虑满足凿岩参数(冲击功、冲击未速、冲击频率或周期)指标、而在参数优化方面尚无成熟的方法。本文则对这一问题进行了探讨,提出冲击器结构参数优化设计可以系统压力脉动及液压冲击最小为目的进行,它具有十分明显的工程意义。为此,将冲击器动力学模型近似简化处理为“等加速”型模型,指出寻求最优结构参数,实质是一个寻求最优“开关”控制问题;由此导出作用在冲击活塞上的液压力与冲击器结构参数的解析关系,使求泛函的极值问题能化为一般函数的极值问题。进而具体给出了以蓄能器容积变化和液压冲击最小为目标,建立指标函数的最优设计方法
文档格式:DOC 文档大小:367KB 文档页数:20
建筑物地基基础设计必须满足变形和强度两个基本条件设计过程中,首先 是根据上部结构荷载与地基承载力之间的关系(简单的说,即是建筑物基础底面 处的接触压力应小与等于地基承载力)来确定基础的埋置深度和平面尺寸以保证 地基土不丧失稳定性,这是承载力设计的主要目的。在此前提下还要控制建筑 物的沉降在容许的范围以内,使结构不致因过大的沉降或不均勺沉降而出现开 裂、倾斜等现象,保证建筑物和管网等配套设施能够正常工作
文档格式:PDF 文档大小:1.71MB 文档页数:11
为明确石粉掺合料对地聚物材料的作用机理,以赤泥基注浆材料为研究对象,系统研究了石粉掺量和粒径分布对赤泥基注浆材料浆体性能、力学性能和微观结构的作用规律,并结合X射线衍射仪(XRD)、压汞仪(MIP)和扫描电镜(SEM)等微观测试手段分析其作用机理。研究表明,结石体力学强度随石粉掺量的上升先增大后减小,当石粉的质量分数为5%时抗压强度最高,3 d时可达5.65 MPa,抗压强度提升幅度为18.94%,同时浆液泌水率上升幅度仅为9.85%,且28 d结石体孔隙率降低了18.35%,因此,5%为石粉在赤泥基注浆材料中的最佳质量分数。在石粉最佳质量分数条件下,随着石粉平均粒径减小,浆液凝结时间及泌水率均呈现下降的趋势;当石粉平均粒径达到8 μm时,石粉“填充效应”和“成核效应”作用尤为明显,浆液黏度突升,且3 d和28 d试样强度分别提升了11.86%和10%,故石粉平均粒径越小,其对赤泥基注浆材料的提升作用越显著,赤泥基注浆材料的最佳粉料质量配比为赤泥47.5%,矿粉47.5%,石粉5%;微观分析证实,石粉在浆液水化历程中以物理特性参与其中,为Na2O–SiO2–Al2O3–H2O凝胶(N–A–S–H), 水化硅铝酸钙凝胶(C–A–S–H)和水化硅酸钙凝胶(C–S–H)等凝胶提供成核位点,供地聚物凝胶沉淀和生长,加速浆液水化
文档格式:PPS 文档大小:5.29MB 文档页数:123
§8.1 表面吉布斯函数与表面张力 表面吉布斯函数σ 表面张力σ 影响表面张力的因素 巨大表面系统的表面吉布斯函数 §8.2 纯液体的表面现象 1. 弯曲液面的附加压力 2. 曲率对蒸气压的影响 3. 液体的润湿与铺展 4. 毛细管现象 §8.3 气体在固体表面上的吸附 1.气固吸附的一般常识 2.Langmuir单分子层吸附等温式 3.BET吸附等温式:多分子层气固吸附理论 4.其它吸附等温式 §8.4 溶液的表面吸附 1. 溶液表面的吸附现象 2. Gibbs吸附公式 3. 表面活性剂的吸附层结构 4. 表面膜 §8.5 表面活性剂及其作用 1.表面活性剂的分类 2.胶束和临界胶束浓度 3.表面活性剂的作用 §8.6 分散系统的分类 §8.7 溶胶的光学和力学性质 1.丁达尔(Tyndall)效应 2. 布朗(Brown)运动 3. 扩散 4. 沉降和沉降平衡 §8.8 溶胶的电性质 1.电动现象:电泳;电渗 2.溶胶粒子带电的原因 3.溶胶粒子的双电层 4.溶胶粒子的结构——胶团 §8.9 溶胶的聚沉和絮凝 1. 外加电解质对聚沉的影响 2. 溶胶的相互聚沉 3. 絮凝 §8.10 溶胶的制备和净化 §8.11 高分子溶液
文档格式:PPT 文档大小:6.93MB 文档页数:207
第一节 表面张力及表面Gibbs自由能 表面张力 表面热力学的基本公式 界面张力与温度的关系 溶液的表面张力与溶液浓度的关系 第二节 弯曲表面上的附加压力和蒸气压 弯曲表面上的附加压力 Young-Laplace 公式 弯曲表面上的蒸气压——Kelvin 公式 第三节 溶液的表面吸附 溶液的表面吸附——Gibbs 吸附公式 *Gibbs 吸附等温式的推导 第四节 液-液界面的性质 液-液界面的铺展 单分子表面膜——不溶性的表面膜 表面压 π-a 曲线与表面不溶膜的结构类型 不溶性表面膜的一些应用 第四节 液-液界面的性质 第五节 膜 L-B 膜的形成 生物膜简介 *自发单层分散 第六节 液-固界面——润湿作用 粘湿过程 浸湿过程 铺展过程 接触角与润湿方程 第七节 表面活性剂及其应用 第八节 固体表面的吸附
文档格式:PDF 文档大小:1.88MB 文档页数:15
随着汽车行业的快速发展,轻量化汽车用钢的研发和应用越来越广泛。抗拉强度超过1000 MPa的第二、三代汽车用钢往往是复相组织,通过固溶、析出、变形、细晶强化等各种强化方式,在基体中形成大量缺陷,导致钢材服役过程中对氢更加敏感,容易在很小的氢溶解条件下发生氢脆。Fe?Mn?C系、Fe?Mn?Al?C系等含Mn量高的汽车结构用钢因层错能较高,不仅直接决定了其强韧性机制,还对其服役性能有重要影响。在Fe?Mn?C系TWIP钢的成分基础上,添加少量Al元素,形成Fe?Mn?(Al)?C钢,不仅能降低钢材密度,提高钢材的强韧性,也因Al元素改变了钢材的微观组织构成,一定程度上令氢脆得到缓解。但当Al含量较高时,形成低密度钢,其组织构成更加复杂,析出物更多,导致氢脆敏感性更显著。本文从Fe?Mn?(Al)?C高强韧性钢的组织构成、第二相、晶体缺陷等特征出发,综述了H在Fe?Mn?(Al)?C钢中的渗透、溶解和扩散行为,H与基体组织、析出相、晶格缺陷的交互作用,H在钢中的作用模型、氢脆机制、氢脆评价手段和方法等。并评述了Fe?Mn?(Al)?C高强韧性钢氢脆问题开展的相关研究工作和最新发展动态,指出通过第一性原理计算、分子动力学模拟和借助氢原子微印技术、三维原子探针等物理实验相结合的方法是从微观层面揭示高强韧性钢氢脆机制的未来发展方向
首页上页56789101112下页末页
热门关键字
搜索一下,找到相关课件或文库资源 111 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有