点击切换搜索课件文库搜索结果(1203)
文档格式:PDF 文档大小:94.55KB 文档页数:6
1.3最大公约式 定义31设f(x),g(x)是2x中不全为零的多项式如果d(x) 是f(x)和g(x)公因式,而且f(x)与g(x)的任何公因式均能整 除d(x)则称d(x)是f(x)与g(x)的一个最大公因式 王定31数城Q上的任意两个不全为零的多项式8(0 均有最大公因子,且对于它们的任意最大公因式d(x)均有 0(x),v(x)∈[x使得 d(x)=o(xf(x)+y(x)g(x)
文档格式:PDF 文档大小:89.65KB 文档页数:6
1.5重因式 二定义5.1设p(x)是Q上的即约多项式,若有自然数k使 得p(x)f(x),但p(x)f(x),则称p(x)是f(x)的一个 重因式;1重因式称为单因式;当k>1时,k重因式统称 为重因式 显然既约多项式p(x)是f(x)的k重因式当且仅当 f(x)=p(x)g(x),且p(x)g(x)
文档格式:PDF 文档大小:96.51KB 文档页数:8
平余式定理 f(x除以x-c所得的余式等于f(c 证明因为x-c是一次多项式故由带余除法可知, 它除(x)所得的余式为常数r,而且,有q(x)∈ΩLx] 使得f(x)=(x-c)q(x)+r令x=c,即得,f(c)=r
文档格式:PDF 文档大小:78.65KB 文档页数:2
1.4因式分解 定义4.1设p(x)是Q上的一个次数大于0的多项式如果 p(x)在[x]中没有真因子,则称是既约多项式(不可约 多项式或质式) 设p是一个既约多项式,f是任意多项式,则(p,f)是 p的因式,从而(p,f)=1或p=c(p,f),c∈因此p和f 二的关系是:(p,f)=1或plf. 命题4.1设p(x)是Q上的即约多项式,若p(x)整除 二多项式f(x)f(x)之积,则p(x)必能整除其中之一
文档格式:PDF 文档大小:91.56KB 文档页数:5
1.2多项式的整除性 定义2.1设f(x)g(x)∈[x],若有h(x)∈[x]使得 f(x)=g(x)h(x),则称g(x)整除f(x),也称g(x)是f(x)的 二一个因式,f(x)是g(x)的一个倍式,记为g(x)f(x)(否则 二记为g(x)十f(x))进一步,若还有0
文档格式:DOC 文档大小:281.5KB 文档页数:7
第二章矩阵及其运算 2.1矩阵 1.方程组由其系数和右端项确定 a21a22 b : + x2 ++ =bm am2 ammb 2.矩阵设mn个数a(i=1,2,m;j=1,2n)排成m行n列的数表
文档格式:DOC 文档大小:408KB 文档页数:9
第五章矩阵的相似变换 5.1矩阵的特征值与特征向量 定义:对于n阶方阵A,若有数λ和向量x≠0满足Ax=x,称λ为A 的 特征值,称x为A的属于特征值λ的特征向量 特征方程:Ax=λx(A-E)x=0或者(ae-A)x=0 (A-E)x=0有非零解det(-E)=0 det(E-A)=0 特征矩阵:A-λE或者λE-A
文档格式:DOC 文档大小:262.5KB 文档页数:10
实践应用 问题一 三人合作效益分配问题 问题的提出: 一般来说,从事某一活动(比如经济活动、社会活动)的各个方面若能同李合作,往 往能够 获得比个人单独活动更大的效益或更小的开支。确定合理地分配这些效益(或分担这些费 用)的 方案是促成合作的前提,我们先研究一个简单的例子
文档格式:PPT 文档大小:422KB 文档页数:27
一、内积的定义和性质 二、向量的长度和性质 三、正交向量组的概念和求法 四、正交矩阵和正交变换 五、小结 思考题
文档格式:DOC 文档大小:481KB 文档页数:12
第六章二次型 变量x1,x2,…,xn的二次齐次多项式 f(x1,x2,,xn)=a1x2+2a12x1x2+2a13x1x3+…+2anx1xn +a22x2+2a23x2x3+…+2a2nx2xn +amx 称为n元二次型,简称为二次型 a∈R:称f(x1,x2,…,xn)为实二次型(本章只讨论实二次型) a∈C:称f(x1,x2,…,xn)为复二次型 6.1二次型的矩阵表示 1.矩阵表示:令an=a(>i),则有
首页上页108109110111112113114115下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1203 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有