点击切换搜索课件文库搜索结果(3601)
文档格式:PDF 文档大小:177.37KB 文档页数:9
定理5.2.1(levi定理)若n(x)为可测集E上的非负可测函数列, 且满足中(x)≤中+1(x),中n(x)→f(x)(n→+∞),则 fdx= lim 中dx n-JE 证明G(f,E)={(x,y)0≤y
文档格式:PPT 文档大小:3.95MB 文档页数:164
一、原函数与不定积分的概念 一定义:如果在区间内,可导函数F(x)的 导函数为f(x),即Vx∈I,都有F'(x)=f(x) 或dF(x)=f(x)dx,那么函数F(x)就称为f(x) 或f(x)dx在区间内原函数
文档格式:DOC 文档大小:265.5KB 文档页数:6
一阶导数应用 1、函数的极值 ①P82,定义:如在x邻域内,恒有f(x)≤f(x),(f(x)≥f(x) ,则称f(x)为函数f(x)的一个极大(小)值。 可能极值点,f(x)不存在的点与f(x)=0的点。(驻点) 驻点一极值点
文档格式:PPT 文档大小:150KB 文档页数:5
函数y=f(x)的导数f(x)仍x是的函数.若(x)在 点x处仍可导,则称∫(x)在x处的导数为函数y=f(x) 在x处的二阶导数记为
文档格式:PPT 文档大小:482.5KB 文档页数:12
一、多项式整除的概念 1.多项式的整除性 设f(x),()F[x,若存在h(x)∈F[x,使 f(x)=g(x)h(x),则说g(x)整除f(x),记为:
文档格式:PPT 文档大小:189KB 文档页数:6
由第一章知:显函数y=f(x),也可写成F(x,y =y-f(x)=0.由方程F(x,y)=0确定的隐函数可能 有两种情形:y是x的函数y=f(x)或x是y的函 数x=(y);但并非所有隐函数都可化为一个显函 数.如y-esy+x2y2=0. 因而有必要研究隐函数的求导方法,下面通过几个例子来介绍
文档格式:PPT 文档大小:631.5KB 文档页数:33
1点估计 设总体X的分布函数F(x)的形式为已知,θ是待估参数。 X1…Xn是X的一个样本,x1…xn是相应的样本值。 点估计问题: 构造一个适当的统计量(X1…,Xn),用它的观察值 0(x1,…xn)来估计未知参数 我们称(X1,…,Xn)为0的估计量;称0(x1,xn) 为θ估计值
文档格式:PPT 文档大小:330.5KB 文档页数:17
1.lev逐项积分定理 若f(x)为E上非负可测函数列, f(x)≤f2(x)≤f3(x)≤…≤fn(x)≤…,且 lim fn(x)=f(x) n→∞ 则limf(x)dx= lim(x)dx
文档格式:DOC 文档大小:262.5KB 文档页数:5
一、填空(每空2分,共20分 x1+2x2-2x3=0 1、设方程组{2x1-x2+x3=0的系数矩阵为A,且存在非零三阶矩 3x1+x2-x3=0 阵B,使得AB=0,则λ=1
文档格式:PPT 文档大小:491KB 文档页数:26
隐函数的求导法则 一、一个方程的情形 1.F(x,y)=0 隐函数存在定理1设函数F(x,y)在点P(x,yo)的某一邻域内具有连续的偏导数,且F(x,yo)=0,F(x,yo)≠0,则方程F(x,y)=0在点P(x,yo)的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数y=f(x),它满足条件yo=f(x),并有
首页上页910111213141516下页末页
热门关键字
搜索一下,找到相关课件或文库资源 3601 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有