点击切换搜索课件文库搜索结果(241)
文档格式:DOC 文档大小:905KB 文档页数:27
第九章欧几里得空间 9-1定义与基本性质 一、向量的内积 定义1设V是实数域R上一个向量空间在V上定义了一个二元实函数,称为内积记作(a,B),它具有以下性质: (1)(a,)=(B,a); (2)(ka,)=k(a,B); (3)(a+,y)=(a,y)+(B,y) (4)(a,a)≥0,当且仅当a=0时,(a,a)=0
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.V×V上的一个函数,如果满足 (i)(·,·)对第一个变量是线性的 (i)(a,B)=(B (ii1)ya∈V,(a,a)≥0,且(a,a)=0分a=0 则称(a,B)为向量a,B的内积,具有内积的复线性空间称为酉空间(欧氏空间在复线性 空间上的推广)
文档格式:PPT 文档大小:465KB 文档页数:13
一、两个多项式的最大公因式 定义1:f(x),g(x),h(x)∈F[x] 若h(x)g(x)hx)f(x) 则h(x)是f(x),g(x)的一个公因式。 例如h=x-1是f=x3-x,g=x3-x2-x+1 的一个公因式
文档格式:DOC 文档大小:127.5KB 文档页数:2
设A是n维欧氏空间V内的一个线性变换,如果对a,∈V,都有 (Aa,)=(a, AB) 则称A是V内的对称变换 命题n维欧氏空间V上的线性变换A是对称变换当且仅当它在标准正交基 ,2n下的矩阵A是实对称矩阵
文档格式:DOC 文档大小:192KB 文档页数:3
第六章6-2欧氏空间中特殊的线性变换 1.正交变换 设V是n维欧氏空间,A是V内一个线性变换如果对任意a,B∈V都有 (Aa, AB)=(a,B) 则称A是V内的一个正交变换 正交变换的四个等价表述 命题2.1A是n维欧氏空间V内的一个线性变换,则下列命题等价
文档格式:DOC 文档大小:251.5KB 文档页数:3
5.1.3线性空间上的对称双线性函数、二次型函数的定义 定义若f为V上的双线性函数且f(a,B)=f(B,a),则称f为V上的对称双线性函数
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.4子空间的直和与直和的四个等价定义 定义设V是数域K上的线性空间,2…,是V的有限为子空间。若对于∑中任一向量,表达式a=a1+a2+…+am,a1e,i=12,m是唯一的,则称∑V为直和,记为
文档格式:DOC 文档大小:188.5KB 文档页数:4
4.1.4线性空间的基变换,基的过渡矩阵 设VK是n维线性空间,设1,E2,…n和2,…,n是两组基,且
文档格式:DOC 文档大小:419.5KB 文档页数:5
8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: 1)加法满足结合律; 2)加法满足加换律 3)有一个数0,是对任意整数a,0+a=a; 4)对任意整数a,存在整数b,使b+a=0 5)乘法满足结合律 6)有一个数1,是对任意整数a,la=a 7)加法与乘法满足分配律:a(b+c)=ab+ac
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用小块矩阵表示如下:
首页上页1011121314151617下页末页
热门关键字
搜索一下,找到相关课件或文库资源 241 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有