点击切换搜索课件文库搜索结果(1551)
文档格式:DOC 文档大小:28KB 文档页数:1
海运提单样式 1、托运人 2、B/L NO 3、SHIPPER
文档格式:DOC 文档大小:723KB 文档页数:12
第四章一元函数微分学的应用 第一节柯西( Cauchy)中值定理与洛必达(L'Hospital)法则 思考题: 1.用洛必达法则求极限时应注意什么? 答:应注意洛必达法则的三个条件必须同时满足 2.把柯西中值定理中的“f(x)与F(x)在闭间区[,b]上连续”换成“f(x)与F(x) 在开区间(a,b)内连续”后,柯西中值定理的结论是否还成立?试举例(只需画出函数图 象)说明 y 答:不成立
文档格式:PPT 文档大小:247.5KB 文档页数:35
1、LINE(直线)命令 〖功能〗绘制二维或三维直线段。 〖命令〗LINE或L 〖菜单〗绘图→直线 C:从当前点到起点绘制一条直线,产生封闭 多边形后退出该命令
文档格式:PPT 文档大小:2.71MB 文档页数:86
第一节 柯西(Cauchy)中值定理与洛必达(L’Hospital)法则 第二节 拉格朗日(Lagrange)中值定理及函数的单调性 第三节 函数的极值与最值 *第四节 曲率 第五节 函数图形的描绘 第六节 一元函数微分学在经济上的应用
文档格式:DOC 文档大小:232.5KB 文档页数:2
第四章4-3线性映射与线性变换 4.3.1线性映射的定义 定义设U,V为数域K上的线性空间,φ:U→V为映射,且满足以下两个条件: i)、(a+)=(a)+(),(a,B∈U); i)、(ka)=k(a),(a∈U,k∈K), 则称为(由U到V的)线性映射, 由数域K上的线性空间U到V的K的线性映射的全体记为Hom(U,V),或简记为 Hom(U,). 定义中的i和)二条件可用下述一条代替 (ka+1)=k(a)+kq(B),(a,B∈U,k,l∈K)
文档格式:PDF 文档大小:134.23KB 文档页数:5
一.(本题20分)设K为数域.给定K4的两个子空间 M={(x1,2,3,4)|21-x2+4x3-3x4=0,x1+x3-x4=0 N={1,x2,x3,4)3x1+x2+x3=0,7x1+7x3-3x4=0} 求子空间MN和M+N的维数和一组基 二(本题10分)在K4内给定 a1=(1,-1,1,1),a2=(2,-2,0,1). 令M=L(a1,a2).试求商空间K4/M的维数和一组基 三.(本题20分)给定数域K上的3阶方阵 1-11 A=24-2 3-35 1.求K上的3阶可逆方阵T,使T-1AT为对角矩阵 2.对于任意正整数m,求Am
文档格式:DOC 文档大小:266.5KB 文档页数:6
对应特征值礼=-1只有1个线性无关的特征向量,而特征方程的基础解系为5,全体特征向量为x=k1l1(k1≠0)例9设方阵A的特征值A1≠2,对应的特征向量分别为x1,x2,证明: (1)x1-x2不是A的特征向量;
文档格式:DOC 文档大小:242.5KB 文档页数:5
第六章6-4四维时空空间与辛空间 在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量f(a,B)=x1y1+x2y2+x3y3-x4y4(其中a=( x1,x2,x3,x4),B=(y1,y2,y3,y4),称为四维时空空间的度量 令 1000 0100 I= 0010 L000-1 在R内取定基
文档格式:PPT 文档大小:85KB 文档页数:33
一、基本统计处理 1、查取最大值 MAX函数的命令格式有: [Y,]=max(x):将max(X)返回矩阵X的各列中的最大元 素值及其该元素的位置赋予行向量Y与;当X为向量时,则Y与I为 单变量。 [Y,=max(x,l,diM):按数组X的第DIM维的方向查 取其最大的元素值及其该元素的位置赋予向量Y与I
文档格式:DOC 文档大小:515.5KB 文档页数:5
习题讨论 题目: 1,计算I dx ta 2,计算lm=r(mndt,其中Bm为自然数 8,计算J=(11 xax,其中x是x的整数部分 sIn x sIn x 4,一研究l1= dx, dx,p>O的敛散性 x +sinx 5,设f:(-∞+∞)→R,在任何有限区间可积,且有limf(x)=A, 明,Ⅵt,()=「((x+0-f(x)=0 第七章定积分
首页上页127128129130131132133134下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1551 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有