网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(356)
南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第7章 矩阵特征值和特征向量的数值解法 7.1 幂法 7.2 Jacobi法 7.3 QR算法(1/2)
文档格式:PPT 文档大小:1.15MB 文档页数:63
设矩阵A∈Rn,如果存在数入∈C及非零向量x∈C满足方程 Ax∈x,则称λ为矩阵A的一个特征值,称为矩阵A的相应于特 征值λ的特征向量。为简单起见,下称,x为矩阵A的一特征对。 特征值的计算,直接从特征方程()=det-A)=0出发会遇到很 大困难,当n稍大一些,行列式展开本身就很不容易,随后是高次代数 方程求解。因此,矩阵特征值的求解,主要是数值解法
中山大学:《数学分析》第十九章 含参变量积分
文档格式:DOC 文档大小:304.5KB 文档页数:6
例1研究函数F(y)=(2dx的连续性,其中(x)是[01]上连续且为正的函 0x+y 数。 yf(x) 解令g(x,y)=2 x2+y ,则g(x,y)在[0,×[c,d]连续,其中0∈[c,d]。从而F(y)在 y≠0连续
西安电子科技大学:《实用大众线性代数》课程PPT教学课件(MATLAB版)附录A、B、C
文档格式:PPT 文档大小:1.94MB 文档页数:50
附录A MATLAB矩阵代数和作图初步 附录B 本书应用例题索引 附录C 线性代数在工程中的应用举例
北京大学:《数学物理方法》课程教学资源(讲义)第五章 解析函数的局域性展开
文档格式:PDF 文档大小:706.86KB 文档页数:27
一个幂函数在它的收敛圆内代表一个解析函数 如何把一个解析函数表示成幂级数? 定理5.1(Taylor)设函数f(z)在以a为圆心的圆C内及C上解析,则对于圆内的任何 点,f(z)可用幂级数展开为(或者说,f(2)可在a点展开为幂级数) f()=>an(z-a)\
天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第十三章 排队系统分析(13.6)排队系统最优化
文档格式:PPT 文档大小:157KB 文档页数:3
一.标准的M/M/1系统的最优服务率μ 设:C为对每个顾客的单位时间服务费,C为每个顾客在 系统停留单位时间的损失费,z为总费用
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.2)欧氏空间中特殊的线性变换(续)
文档格式:DOC 文档大小:75KB 文档页数:1
命题正交矩阵的特征多项式的根的绝对值等于1 证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0 在C内有非零解向量
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.2)欧氏空间中特殊的线性变换(续)
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0在C内有非零解向量
清华大学:《微积分》课程教学资源_习题讨论:曲线、曲面积分的计算
文档格式:DOC 文档大小:412.5KB 文档页数:13
第五章向量分析 习题讨论:曲线、曲面积分的计算 习题讨论题 1.计算积分:x2d,C:x+y2+z2=1 x+y+z=0' 2,计算积分:1-cos dx+sin+cos ydx, x xx) 沿任一条不与轴相交的曲线。 3,计算1=2mx2+y2,其中X=ax+by 1XdY-Ydx , ad-bc≠0,C为包围原点的闭曲线 4,计算s,j=ad 其中S:x2+y2+z2=a2,外法线为曲面正向。 5,设函数满足条件:
清华大学:《微积分》课程教学资源_习题集 第二部分 一元函数微分学
文档格式:DOC 文档大小:1.59MB 文档页数:28
[选择题] 容易题1—39,中等题40—106,难题107—135。 1.设函数y=f(x)在点x处可导,△y=fx+h)-f(x),则当h→0时,必有 () (A)dy是h的同价无穷小量 (B)△y-dy是h的同阶无穷小量。 (C)dy是比h高阶的无穷小量 ()△y-dy是比h高阶的无穷小量 答D 2.已知f(x)是定义在(∞,+∞)上的一个偶函数且当x0,f(x)0,f\(x)0,f\(x)>0 ()f(x)0 答C
吉林大学:《线性代数》课程教学资源(讲稿)第一章 多项式(1.4)因式分解
文档格式:PDF 文档大小:78.65KB 文档页数:2
1.4因式分解 定义4.1设p(x)是Q上的一个次数大于0的多项式如果 p(x)在[x]中没有真因子,则称是既约多项式(不可约 多项式或质式) 设p是一个既约多项式,f是任意多项式,则(p,f)是 p的因式,从而(p,f)=1或p=c(p,f),c∈因此p和f 二的关系是:(p,f)=1或plf. 命题4.1设p(x)是Q上的即约多项式,若p(x)整除 二多项式f(x)f(x)之积,则p(x)必能整除其中之一
首页
上页
11
12
13
14
15
16
17
18
下页
末页
热门关键字
香港大学
武器原理
食品市场分析
马克思主义主义基本原理教学
全部
胚胎学
农业资源
内部
李正文
课件
会议
横断面设计
和声分析
高等数学B
高等数学(一)
妇产科
服饰配件设计
分子设计
发展概论
定价]
电子期刊
电器
电波
大学美育
大实验
大豆
传染病学
插补原理
案例教学
z域分析
Matlab机器学习
C%252523windows编程
VLSI设计
S域分析
PLC编程
linux操作系统
IE学科
C#
GIS空间分析
3DMAX动画
搜索一下,找到相关课件或文库资源
356
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有