点击切换搜索课件文库搜索结果(328)
文档格式:PPT 文档大小:310.5KB 文档页数:14
定理3.5.1(线性方程组有解的判别定理): 线性方程组(3.5.1)有解的充要条件是它的 系数矩阵A与增广矩阵A有相同的秩
文档格式:DOC 文档大小:232.5KB 文档页数:2
4.3.1线性映射的定义 定义设U,V为数域K上的线性空间,φ:U→V为映射,且满足以下两个条件:
文档格式:DOC 文档大小:1.08MB 文档页数:34
一、线性变换的定义线性空间V到自身的映射称为V的一个变换定义1线性空间V的一个变换A称为线性变换,如果对于V中任意的元素a,B和数域P中任意数k,都有 (1) 一般用花体拉丁字母A,B,表示V的线性变换,A(a)或a代表元素a在 变换下的像定义中等式
文档格式:DOC 文档大小:96.5KB 文档页数:2
3.4.1一些基本概念 定义给定n个互不相同的自然书,把它们按一定次序排列起来: 称为该n个自然数的一个排列。在上述排列中,如果有一个较大的自然竖排在一个较小的 自然数前面,则称为一个反序
文档格式:DOC 文档大小:194.5KB 文档页数:7
2.5.1n阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、 下三角矩阵 定义(数域K上的n阶方阵)数域K上的nn矩阵成为K上的n阶方阵,K上全 体n阶方阵所成的集合记作Mn(K)
文档格式:DOC 文档大小:51.5KB 文档页数:1
定理设A是数域K上的n阶方阵.如果A的特征值全属于K,则A在K上相似于 Jordan形矩阵,并且在不计 Jordan块顺序的意义下 Jordan形是唯一的. 证明:此定理就是上一定理用矩阵的语言叙述出来 Jordan标准形的计算方法:
文档格式:DOC 文档大小:209KB 文档页数:3
9-4单变量有理函数域 9.4.1域上的一元有理分式域的定义 设R为一整环,命S={(b,a)|a,b∈R,a≠0}。现在S中规定为 逐一验证“反身性”、“对称性”、“传递性”可知为一等价关系。用(b,a)表示与 (ba)等价的元素的全体。现记S关于u的等价类的集合为%,则(b,a)是中的元 素。下面在上定义二元运算:
文档格式:DOC 文档大小:51.5KB 文档页数:1
准对角矩阵称为 Jordan形矩阵,而主对角线上的小块方阵J称为 Jordan块 定理设A是数域K上的n维线性空间V上的线性变换.如果A的特征值全属于K, 则A在V的某组基下的矩阵为 Jordan形,并且在不计 Jordan块的意义下 Jordan形是唯 一的. 证明:对n作数学归纳法
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质: 1)E=E 2)(A)=A 3)(kA)*=kA 4)(A+B)=a+B 5)(AB)'=B'A' 如果A=A,则称A是一个厄米特变换
文档格式:DOC 文档大小:214.5KB 文档页数:2
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.5 商空间上诱导的线性变换 4.5.1 线性变换在(关于不变子空间的)商空间上的诱导变换的定义
首页上页1112131415161718下页末页
热门关键字
搜索一下,找到相关课件或文库资源 328 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有