点击切换搜索课件文库搜索结果(145)
文档格式:DOC 文档大小:229KB 文档页数:4
12.3.2用一个多项式的根和另一个多项式计算结式的公式 命题设 f(x)=ax+a1x-+…+an(a≠0 (x) box\+b- + (bo=0) 如果f(x),g(x)在C[x]中的分解式为 g()= bo (x-B) ).(x-)(1) 那么 R(f,g)=ag(a)=(-1)f(B)(*) 证明在数域K上的n+m+1元多项式环K[x,y1yn21m]中,令 f(x,y,yn)=a(x-y)…(x-yn)(2) g(x,z1,m)=b(x-z)…(x-m)(3)
文档格式:DOC 文档大小:1.15MB 文档页数:249
《法律职业道德修养》 《哲学思维方法》 《基础写作 B》 《心理学》 《人力资源管理概论》 《高等数学 E》 《Visual FoxPro 程序设计》 《Visual FoxPro 程序设计》(上机) 《中国传统文化概论 A》 《西方文化概论 A》 《公共关系学》 《市场营销学 B》 《法理学》 《中国法制史》 《宪法》 《人权法》 《民法》 《刑法》 《行政法与行政诉讼法》 《诉讼法 1、2》 《商法》 《知识产权法 A》 《经济法》 《环境法》 《国际法》 《国际私法》 《国际经济法》 《世界贸易组织法》 《法律逻辑学》 《合同法》 《婚姻家庭继承法》 《劳动与社会保障法》 《海商法》 《证据学》 《律师实务》 《法律文书》 《法律经济学》 《国际贸易法》 《国际金融法》 《国际投资法》 《国际税法》 《国际商事仲裁法》 《法务实训》 《法律英语》 《外国法制史》 《法学名著导读》 《物权法》 《侵权法》 《犯罪学》 《犯罪心理学》 《房地产法》 《国家赔偿法》 《司法考试实务》 《法律诊所》 《日本法专题》 《外国宪法》 《欧盟法专题》 《法律文献检索》 《学年论文》 《专业见习》 《暑期法律实践》 《社区法律实践》 《毕业实习》 《毕业论文》
文档格式:DOC 文档大小:162KB 文档页数:2
第四章4-2子空间与商空间 4.2.4子空间的直和与直和的四个等价定义 定义设V是数域K上的线性空间,2…,是V的有限为子空间。若对于 ∑中任一向量,表达式 a=a1+a2+…+am,a1e,i=12,m 是唯一的,则称∑V为直和,记为 1 v⊕或V 定理设V12,…,Vn为数域K上的线性空间V上的有限为子空间,则下述四条等
文档格式:DOC 文档大小:210.5KB 文档页数:3
第七章 定积分的应用 第一节定积分的几何应用 思考题: 1.什么叫微元法?用微元法解决实际问题的思路及步骤如何? 答:微元法就是运用“无限细分”和“无限累积”两个步骤解决实际问题的一种方 法,具体说来,即是对在区间[a,b]上分布不均匀的量F,先将其无限细分,得其微元 dF=f(x)dx然后将微元dF在[a,b上无限求和(累积)即得所求量 F=f=f(x)dx,求微元时,一般是对[a,b的子区间[x,x+dx]对应的部分量, 采用以“常代变”,“均匀代替不均匀”,“直代曲”的思路
文档格式:DOC 文档大小:537.5KB 文档页数:6
第九章元多项式环 9-1一元多项式环的基本理论 911域上的一元多项式环的定义 定义91设K是一个数域,x是一个不定元。下面的形式表达式 f(x) (其中an3a1,a2属于K,且仅有有限个不是0)称为数域K上的一个不定元x的一元多 式。数域K上一个不定元x的多项式的全体记作K[x] 下面定义K[x]内加法、乘法如下 加法设
文档格式:DOC 文档大小:55KB 文档页数:1
命题在同构意义下张量积满足交换律、结合律以及与直和的分配律,即 VOV= V1(2V3)=(V1V2)V3 V1(2V3)=(V1V2)⊕(VV3) 证明利用张量积的定义性质。 12.2.2线性变换的张量积的定义 定义12.5线性变换的张量积 设V1,V2为K线性空间,A为V1上的线性变换,B为V2上的线性变换。定义A和 B的张量积(记为AB)为V1V2上的线性变换: AB:V1V2→V1V2
文档格式:DOC 文档大小:197.5KB 文档页数:2
第四章4-4特征值与特征向量(续) 4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组 5+52++=0,j0,1,t-1 其中入的方幂组成的矩阵为
文档格式:DOC 文档大小:140KB 文档页数:3
第五章5-3实与复二次型的分类 1.复、实二次型的规范形 定理复数域上的任一二次型f在可逆变数替换下都可化为规范形 zi+…+z, 其中r是f的秩.复二次型的规范形是唯一的. 证明复数域C上给定二次型) f=, x,x, ( =ai 设它在可逆线性变数替换X=TZ下变为标准型 d1z2+d2z2+…an 这相当于在C上n维线性空间V内做一个基变换 (n2n)=(1,2EnT 使对称双线性函数f(a,B)在新基下的矩阵成对角形
文档格式:DOC 文档大小:560.5KB 文档页数:7
9.2.2Qx]内多项式的因式分解 定义9.12定义Z[x]={axn+a1x+…+∈Z,i=01n}。 假设f(x)∈Z[x],f(x)≠0及±1。如果g(x)h(x)∈[x],使得f(x)=g(x)h(x), 且g(x)≠±1,h(x)≠±1,则称f(x)在Z[x]内可约,否则称f(x)在Z[x]内不可约 定义9.13设 f(x)=ax+axn+…+an∈Z[x], 这里n≥1。如果(aa1an)=1,则称f(x)是一个本原多项式。 命题Q[x]内一个非零多项式f(x)可以表成一个有理数k和一个本原多项式f(x)的
文档格式:DOC 文档大小:544.5KB 文档页数:19
设P是数域,是一个文字,作多项式环P,一个矩阵如果它的元素是 的多项式,即P[]的元素,就称为-矩阵在这一章讨论λ矩阵的一些性 质,并用这些性质来证明上一章第八节中关于若当标准形的主要定理 因为数域P中的数也是P]的元素,所以在λ矩阵中也包括以数为元素 的矩阵.为了与-矩阵相区别,把以数域P中的数为元素的矩阵称为数字矩 阵.以下用A(),B()…等表示-矩阵 我们知道,P]中的元素可以作加、减、乘三种运算,并且它们与数的运 算有相同的运算规律而矩阵加法与乘法的定义只是用到其中元素的加法与乘 法,因此可以同样定义λ-矩阵的加法与乘法,它们与数字矩阵的运算有相同 的运算规律 行列式的定义也只用到其中元素的加法与乘法,因此,同样可以定义一个 nxn的-矩阵的行列式.一般地,-矩阵的行列式是的一个多项式,它与 数字矩阵的行列式有相同的性质
首页上页89101112131415下页末页
热门关键字
搜索一下,找到相关课件或文库资源 145 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有