点击切换搜索课件文库搜索结果(152)
文档格式:PDF 文档大小:283.63KB 文档页数:9
本章首先讨论线性算子的有界性和有界线性算子的空间,然后叙述关于线性算子和线性 泛函的若干基本定理,它们是共鸣定理、开映射定理、闭图像定理以及Hahn- Bana ch延拓 定理(包括分析形式和几何形式).这些定理在整个泛函分析理论中有着基本的重要作用 本章还将介绍这些定理在 Fourie分析、积分方程、微分方程适定问题以及逼近论和近似计 算等方面的应用
文档格式:PDF 文档大小:11.93MB 文档页数:529
第1篇 导言 第1章 宏观经济学的科学 第2章 宏观经济学的数据 第2篇 长期中的经济 第3章 国民收人:从哪里来和到哪里去 第4章 经济增长I 第5章 经济增长Ⅱ 第6章 失业 第7章 货币与通货膨胀 第8章 开放经济 第3篇 短期中的经济 第9章 经济波动导言 第10章 总需求1 第11章 总需求Ⅱ 第12章 开放经济中的总需求 第13章 总供给 第4篇 宏观经济政策争论 第14章 稳定政策 第15章 政府债务与预算赤字 第5篇 再论支撑宏观经济学的微观经济学 第16章 消费 第17章 投资 第18章 货币供给与货币需求 第19章 经济波动理论的进展
文档格式:PDF 文档大小:201.52KB 文档页数:9
教学目的欧氏空间R”上的测度与积分是本课程的主要研究对象本节讨 论欧氏空间上的若干拓扑概念通过本节的学习可以熟悉欧氏空间上的开集, 闭集和 Borel集, Cantor集等常见的集,为后面的学习打下基础 本节要点由R”上的距离给出邻域内点聚点的定义从而给出开集,闭集 的定义由开集生成一个o代数引入 Borel集 Cantor集是一个重要的集,它有 一些很特别的性质.应使学生深刻理解本节介绍的各种集的概念并熟练应用 充分利用几何图形的直观,可以帮助理解本节的内容
文档格式:PPT 文档大小:663KB 文档页数:61
第一章导论:宏观经济学的产生与发展 1.早期的宏观经济理论 (1)早期的宏观经济理论集中在两个方面是货币理论:二是经济周期理论或失业和衰退的理论。较著名的有萨伊定律@,修莫的货师数量论@或费雪的货币数量公式@等。 当时关于货币的理论和经济周期的理论存在着很大分歧,有些甚至是对立的关于周期的理论争论的焦点在失业问题上和经济衰退是否资本主义经济中固有的问题上。例如,萨伊为代表的主流认为失业是暂时的或自愿的,因为价格有充分的灵活性,只要接受当时的工资就可以就业,而且衰退也是暂时的。市场机制可以自动的纠正这些偏差
文档格式:PDF 文档大小:4.22MB 文档页数:187
第一章 矩阵的相似变换 §1.1特征值与特征向量 §1.2相似对角化 §1.3 Jordan标准形介绍 §1.4 Hamilton-Cayley定理 §1.5向量的内积 §1.6西相似下的标准形 习题一 第二章 范数理论 §2.1向量范数 §2.2矩阵范数 一、方阵的范数 二、与向量范数的相容性 三、从属范数 四、长方阵的范数 §2.3范数应用举例 一、矩阵的谱半径 二、矩阵的条件数 习题二 第三章 矩阵分析 §3.1矩阵序列 §3.2矩阵级数 §3.3矩阵函数 一、矩阵函数的定义 二、矩阵函数值的计算 三、常用矩阵函数的性质 §3.4矩阵的微分和积分 一、函数矩阵的微分和积分 二、数量函数对矩阵变量的导数 三、矩阵值函数对矩阵变量的导数 §3.5矩阵分析应用举例 一、求解一阶线性常系数微分方程组 二、求解矩阵方程 三、最小二乘问题 习题三 第四章 矩阵分解 §4.1矩阵的三角分解 一、三角分解及其存在惟一性问题 二、三角分解的紧凑计算格式 §4.2矩阵的QR分解 一、Householder矩阵与Givens矩阵 二、矩阵的QR分解 三、矩阵酉相似于Hessenberg矩阵 §4.3矩阵的满秩分解 一、Hermite标准形 二、矩阵的满秩分解 §4.4矩阵的奇异值分解 习题四 第五章 特征值的估计与表示 §5.1特征值界的估计 §5.2特征值的包含区域 一、Gerschgorin定理 二、特征值的隔离 三、Ostrowski定理 §5.3 Hermite矩阵特征值的表示 §5.4广义特征值问题 一、广义特征值问题 二、广义特征值的表示 习题五 第六章 广义逆矩阵 §6.1广义逆矩阵的概念 §6.2 {1}-逆及其应用 一、{1}-逆的计算及有关性质 二、{1}-逆的应用 三、由{1}-逆构造其他的广义逆矩阵 §6.3 Moore-Penrose逆A+ 一、A+的计算及有关性质 二、A+在解线性方程组中的应用 习题六 第七章 矩阵的直积 §7.1直积的定义和性质 §7.2直积的应用 一、矩阵的拉直及其与直积的关系 二、线性矩阵方程的可解性及其求解 习题七 习题答案与提示
文档格式:PDF 文档大小:201.83KB 文档页数:8
在引言中我们已经提到, Riemann积分在处理连续函数或者逐段连续函数时,在计算 些几何和物理的量时它是很有用的.但它也存在一些缺陷,使得 Riemann积分在处理分析数 学中的一些问题时显得不够有力.因此需要建立新的积分的理论二十世纪初, Lebesgue建 立了一种新的积分理论.新的积分理论消除了上述缺陷,并且包含了原有的 Riemann积分理 论.这就是本章将要介绍的 Lebesgue积分理论 由于现代数学的许多分支如概率论,泛函分析,群上调和分析等越来越多的用到一般 空间上的测度与积分理论,因此我们将在一般的测度空间上介绍积分理论
文档格式:DOC 文档大小:18.5KB 文档页数:1
1.概括分析:在第二章中我们研究了离散型随机变量,在那里随机变量只取有限个或 可列个值,这当然有很大的局限性在许多随机现象中出现的一些变量,它们的取值是可以充满 某个区间或区域的(也就不会只取有限个或可列个的值),概率论的任务是要研究它们的统计规 律,那么对于这种更一般的随机变量,如何来描述它的统规律呢?因为单点集的长度为零由 此可知,用“分布列”是行不通的,需要另外找一个合适的“工具”分布函数.本节是概率 论中的基本内容之一学习本节,要求学生掌握随机变量
文档格式:PDF 文档大小:1.13MB 文档页数:30
因子分析( Factor Analysis)是多元统讣分析技术的一个分支,其主要目的 是浓缩数据。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本 结构,并用少数几个假想变量来表示基本的数据结构。这些假想变量能够反映原 来众多的观测变量所代表的主要信息,并解释这些观测变量之间的相互依存关 系,我们把这些假想变量称之为基础变量,即因子( Factors)。因子分析就是研 究如何以最少的信息丢失把众多的观测变量浓缩为少数几个因子 因子分析是由心理学家发展起来的,最初心理学家借助因子分析模型来解释 人类的行为和能力,1904年查尔斯·斯皮尔曼( Charles spearman)在美国心理学 杂志上发表了第一篇有关因子分析的文章,在以后的三四十年里,因子分析的理 论和数学基础逐步得到了发展和完善,它作为一个一般的统计分析工具逐渐被人 们所认识和接受。50年代以来,随着计算机的普及和各种统计软件的出现,因 子分析在社会学、经济学、医学、地质学、气象学和市场营销等越来越多的领域 得到了应用
文档格式:PDF 文档大小:1.13MB 文档页数:30
因子分析( Factor Analysis)是多元统讣分析技术的一个分支,其主要目的 是浓缩数据。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本 结构,并用少数几个假想变量来表示基本的数据结构。这些假想变量能够反映原 来众多的观测变量所代表的主要信息,并解释这些观测变量之间的相互依存关 系,我们把这些假想变量称之为基础变量,即因子( Factors)。因子分析就是研 究如何以最少的信息丢失把众多的观测变量浓缩为少数几个因子 因子分析是由心理学家发展起来的,最初心理学家借助因子分析模型来解释 人类的行为和能力,1904年查尔斯·斯皮尔曼( Charles spearman)在美国心理学 杂志上发表了第一篇有关因子分析的文章,在以后的三四十年里,因子分析的理 论和数学基础逐步得到了发展和完善,它作为一个一般的统计分析工具逐渐被人 们所认识和接受
文档格式:PPT 文档大小:2.13MB 文档页数:123
•几十年来图论在理论上和应用上都得到很大的发展,特别是在近30多年来由于计算机的广泛应用而又得到飞跃的发展。•在计算机科学、运筹学、化学、物理和社会科学等方面都取得了不少成果,对计算机学科中的操作系统研究、编译技术、人工智能和计算机网络等方面都有广泛的应用。•这里主要讨论图的基本概念和算法,为今后的学习和研究打下基础。本章首先给出图、简单图、完全图、子图、路和图的同构等概念,接着研究了连通图性质和规律,给出了邻接矩阵、可达性矩阵、连通矩阵和完全关联矩阵的定义。最后介绍了欧拉图与哈密尔顿图
首页上页910111213141516下页末页
热门关键字
搜索一下,找到相关课件或文库资源 152 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有