点击切换搜索课件文库搜索结果(189)
文档格式:PPT 文档大小:47KB 文档页数:2
设函数fx)在点x的某一邻域U(x0)内具有各阶导数,则fx) 在该邻域内能展开成泰勒级数的充分必要条件是fx)的泰勒 公式中的余项R(x)当n->0时的极限为零,即
文档格式:PDF 文档大小:1.4MB 文档页数:101
第一章 函数与极限. 1 第 1 节 函数. 1 第 2 节 极限. 5 第二章 导数与微分. 10 第 1 节 导数. 10 第 2 节 函数的微分. 12 第 3 节 瞬时变化率. 14 第 4 节 函数的单调性. 17 第 5 节 函数的极值与最值. 18 第 6 节 高阶导数. 28 第 7 节 误差. 31 第 8 节 微分中值定理的工程背景. 32 第三章 定积分.33 第 1 节 求总量. 33 第 2 节 微积分基本公式. 35 第 3 节 换元积分法. 42 第 4 节 分部积分法. 44 第 5 节 平面图形的面积. 46 第 6 节 立体的体积. 47 第 7 节 平面曲线的弧长. 47 第 8 节 变力沿直线所作的功. 48 第 9 节 压力与引力. 50 第 10 节 函数的平均值. 52 第四章 微分方程.55 第 1 节 可分离变量的微分方程. 55 第 2 节 一阶线性微分方程. 63 第 3 节 可降阶的微分方程. 67 第 4 节 二阶常系数线性微分方程. 70 第五章 空间解析几何. 72 第 1 节 几何应用. 72 第 2 节 向量问题. 74 第六章 多元函数微分学.76 第 1 节 多元函数的最值. 76 第 2 节 偏导数. 78 第 3 节 方向导数与梯度. 79 第七章 多元函数积分学.83 第 1 节 二重积分解决实际问题. 83 第 2 节 多元函数积分在物理上的应用. 86 第八章 级数.88 第 1 节 无穷级数的概念. 88 第 2 节 傅里叶级数. 90 第 3 节 杂例. 94
文档格式:PDF 文档大小:1.29MB 文档页数:199
§9.1 多元函数的基本概念 一、平面点集 二、多元函数的概念 三、多元函数的极限 四、多元函数的连续性 §9.2 偏导数 一、偏导数的定义及其计算法 二、高阶偏导数 §9.3 全微分 一、全微分的定义 二、可微的条件 §9.4 多元复合函数的求导法则 一、多元复合函数求导的链式法则 二、全微分形式不变性 §9.5 隐函数的求导公式 一、一个方程的情形 二、方程组的情形 §9.6 多元函数微分学的几何应用 一、空间曲线的切线与法平面 二、曲面的切平面与法线 §9.7 方向导数与梯度 一、方向导数 二、梯度 §9.8 多元函数的极值及其求法 一、多元函数的极值及最大值与最小值 二、条件极值 拉格朗日乘数法
文档格式:PDF 文档大小:1MB 文档页数:21
§1.1 函数 §1.2 四类具有特殊性质的函数 §1.3 复合函数与反函数,习题课 §2.1 数列的极限 §2.2 收敛数列,习题课 §2.3 函数的极限 §2.3 函数极限的定理,习题课 §1.4 无穷小与无穷大 ,习题课 §3.1 连续函数 §3.2 连续函数的性质,习题课 §4.1 实数连续性定理 §4.2 闭区间连续函数整体性质的证明,习题课 §5.1 导数 §5.2 求导法则与导数公式,习题课 §5.3 隐函数与参数方程求导法则 §5.4 微分,习题课 §2.5 高阶导数与高阶微分,习题课 §6.1 中值定理,习题课 §6.2 洛必达法则,习题课 §6.3 泰勒公式,习题课 §6.4 导数在研究函数上的应用,习题课
文档格式:PDF 文档大小:109.67KB 文档页数:40
求导运算与积分运算是互逆的运算 , 积分的方法常可通过求导法则导出 ,导数的基本公式导出积分的基本公式 ,微分形式不变性导出积分形式不变性 ,引出第一换元法 , 下边是乘积的求导法则导出分部积分
文档格式:PPT 文档大小:365.5KB 文档页数:14
泰勒公式主要是用多项式近似代替函数,且误差可由公式表 示出来.这样对精确度要求较高且需要估计误差的情形就可 用高次多项式来近似表示函数,同时给出误差公式
文档格式:PDF 文档大小:410.43KB 文档页数:18
二、几个初等函数的麦克劳林公式 一、泰勒公式的建立 用多项式近似表示函数 — 应用 近似计算 理论分析
文档格式:PPT 文档大小:691.5KB 文档页数:28
1、 复积分的概念及基本计算方法 2、 柯西-古萨积分定理 3、 复合闭路定理 4、 柯西积分公式与高阶导数公式
文档格式:PDF 文档大小:8.05MB 文档页数:101
第一节 定积分的概念 (Concept of Definite Integrals) 问题的提出 二 定积分的定义 三四 定积分存在的两个充分条件 定积分的几何意义 五定积分的性质 第二节微积分基本公式 一 积分上限函数及其导数 三 牛顿—莱布尼茨公式 四小结 五思考、判断题 第三节定积分的换元法与分部积分法 一问题的提出 定积分的换元法 定积分的分部积分法 五思考、判断题 第四节 反常积分 (ImproperIntegrals) 二无穷限的广义积分 无界函数的广义积分 四Γ-函数 五小结 六思考与判断题
文档格式:PPT 文档大小:4.2MB 文档页数:163
第一节 定积分的概念 一、问题的提出 二、定积分的定义 三、存在定理 四、几何意义 第二节 定积分的性质、中值定理 第三节 微积分基本公式 一、问题的提出 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式发 第四节 定积分的换元积分法 第五节 定积分的分部积分公式 第七节 广义积分 一、无穷限的广义积分 二、无界函数的广义积分
首页上页1213141516171819下页末页
热门关键字
搜索一下,找到相关课件或文库资源 189 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有