点击切换搜索课件文库搜索结果(164)
文档格式:PPT 文档大小:263KB 文档页数:30
主要讨论高层建筑结构顺风向静动 力风荷载的计算,采用前面所述风振动 力分析的原理和方法,即按风振随机振 动的振型分解法,且一般只考虑第一振 型的影响
文档格式:PPT 文档大小:89KB 文档页数:14
结构设计计算方法发展过程: 1.容许应力法:以弹性理论为基础,但未考虑材料的塑性。 2.破坏阶段法:考虑了材料的塑性,但仅仅用一个笼统的安全系数考虑超载,材料的变异等。 3.极限状态法:用三个分项系数把不同的荷载、不同材料及不同构件的受力性质等用不同的安全系数区别开来。目前《公路桥规》采用该方法
文档格式:PPT 文档大小:984KB 文档页数:86
第一节预应力砼受弯构件各阶段的受力特点 特点 (1)预加力Ny是时间的函数; (2)施工到使用不同阶段的截面积和特性不同 (3)荷载变化; (4)从施工到使用各个阶段的材料强度在变化
文档格式:PPT 文档大小:287KB 文档页数:18
本章主要介绍轴向荷载作用在构件截面重心时,构件的破 坏特征及强度计算、构造要求,并对螺旋箍筋构件的核心混 凝土强度分析及强度计算作详细介绍
文档格式:PDF 文档大小:7.37MB 文档页数:276
1概述 所谓建筑火灾,是指烧损建筑物及其容纳物品的燃烧现象高层建筑火灾,是指高层 建筑内某一空间燃烧起火,进而发展到某些防火分区或整个高层建筑的火灾。由于高层建 筑空间高大,人员、物资集中,火灾在烟囱效应作用下发展蔓延快,消防救助困难,因而 具有极大的危险性。 在某一防火分区或建筑空间,可燃物在刚刚着火、火源范围很小时,由于建筑空间相 对于火源来说,一般都比较大,空气供应充足,燃 80%火灾荷载烧 所以,燃烧状况与开敞的空间基本相同
文档格式:PPT 文档大小:2.33MB 文档页数:30
一、结构的非弹性性质滞回曲线:结构或构件在反复荷载作用下的力与非弹性变形间的关系曲线
文档格式:PPS 文档大小:109KB 文档页数:5
习题 1.结构可靠性的含义是什么?它包括哪些 功能要求? 2.结构超过极限状态会产生什么后果? 3.建筑结构安全等级是按什么原则划分的? 4.“作用”和“荷载”有什么区别?为什 么说构件的抗力是一个随机变量? 5.什么是结构的极限状态?结构的极限状态 分为几类,其含义各是什么?
文档格式:PDF 文档大小:563.36KB 文档页数:6
公路上正常行驶的车辆一旦操纵失控,安装在路侧的护栏就显得极为重要,可避免车辆直接冲出道路发生致命危险.波形梁护栏是最常见的一种被动防护装置,可有效抵御车辆施加的碰撞荷载.依据常规的设计思路,这种护栏可以利用波形梁板、防阻块和立柱的变形来吸收汽车碰撞所产生的能量.但与实际情况不同的是,在这一过程中忽略了地基土体对碰撞过程可能产生的影响.本文通过分别建立不考虑和考虑地基约束作用的碰撞计算模型来研究土体的贡献.在模拟过程中,分别观测货车的运行轨迹、护栏的变形和土体的变形.此外,也分析了不同部件对碰撞能量的吸收比率.与立柱接触区毗邻的土体因受冲击荷载影响,可能发生剪切失效.整个护栏系统中超过10%的系统能量实际上是由土体吸收的,常用的简化固定基模型跟实际情况有一定的出入
文档格式:PDF 文档大小:2.99MB 文档页数:131
第一节 概述 • 水闸的作用和类型 • 水闸的工作特点及设计要求 • 水闸的组成 • 水闸的设计步骤 第二节 闸孔尺寸的确定 • 水闸图 • 概述 • 闸孔及底板型式选择 • 上、下游水位确定 • 闸底板高程确定 • 过闸单宽流量确定 • 闸尺寸的计算 第三节 水闸的消能防冲 • 闸下游发生冲刷原因 • 消能防冲条件及措施 • 波状水跃及折冲水流的防止措施 • 防冲加固措施 第四节 水闸防渗设计 • 目的、任务、内容 • 闸基防渗长度及地下轮廓线布置(地下轮廓线设计) • 闸基渗流计算 • 防渗排水设备 • 侧向渗流 第五节 闸室的布置和构造 • 闸墩与胸墙 • 工作桥与交通桥 • 缝与止水 第六节 闸室的稳定计算 • 稳定计算应满足的要求 • 荷载计算 • 荷载组合 • 闸室稳定计算 • 基底压力计算 • 闸基沉降 • 地基处理
文档格式:PDF 文档大小:3.52MB 文档页数:8
为了研究运转工况下风电塔的地震响应及倒塔模式,使用风电塔设计软件FAST建立风电塔模型,比较停机和运转不同工况下的结构响应,并在运转工况下通过改变地震动输入方向研究不同风震组合角对结构响应的影响,得到最不利工况;使用ABAQUS建立风电塔的精细化有限元模型,将FAST计算的塔顶风荷载导入ABAQUS开展分析计算.将基于叶素理论计算的塔顶荷载与FAST计算结果进行对比,并进一步将弹性阶段ABAQUS与FAST模拟的塔顶位移进行对比,校验分析方法的合理性.利用ABAQUS模型将地震动调幅,开展倒塔模拟.研究结果表明运转工况下最不利风震组合角是90°,强震下塑性铰在塔身下部出现并向中上部发展,最终该风电塔在中上部发生破坏
首页上页1011121314151617下页末页
热门关键字
搜索一下,找到相关课件或文库资源 164 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有