HACCP-An Introduction to the Hazard Analysis and Critical Control Point System I. Introduction The acronym HACCP, which stands for Hazard Analysis and Critical Control Point, is one which evokes 'food safety'. Originally
01 Prevention on frequently cases seen in colleges 01: Theft cases 02:Telecom Fraud 03:Fighting and brawling 04:Fire Control and Safety 02 Legal Information 01:Drug control 02:Residence registration 04:Road traffic safety 03:Religion 03 Ways to request help from police 01:Dial 110 02:Come to the police station
1 8.1 Controller Parameterization for General Plants 2 8.2 H∞ PID Controllers for Unstable Plants 3 8.3 H2 PID Controllers for Unstable Plants 4 8.4 Performance Limitation and Robustness 5 8.5 Maclaurin PID Controllers for Unstable Plants 6 8.6 PID Design for the Best Achievable Performance 7 8.6 All Stabilizing PID Controllers for Unstable Plants
1 7.1 The Feature of Integrating Systems 2 7.2 H∞ PID Controllers for Integrating Plants 3 7.3 H2 PID Controllers for Integrating Plants 4 7.4 Controller Design for General Integrating Plants 5 7.5 Maclaurin PID Controllers for Integrating Plants 6 7.6 Best Achievable Performance of a PID Controllers
1 6.1 The Quasi-H∞ Smith Predictor 2 6.2 The H2 Optimal Controller and the Smith Predictor 3 6.3 Equivalents of the Optimal Controller 4 6.4 The PID Controller and High-Order Controllers 5 6.5 Choice of Weighting Functions 6 6.6 Simplified Tuning for Quantitative Robustness
1 5.1 H2 PID Controllers for the First-Order Plant 2 5.2 Quantitative Tuning of H2 PID Controllers 3 5.3 H2 PID Controllers for the Second-Order Plant 4 5.4 Control of Inverse Response Processes 5 5.5 PID Controllers Based on the Maclaurin Series Expansion 6 5.6 PID Controllers with the Best Achievable Performance 7 5.7 Choice of the Filter
1 3.1 Norms and System Gains 2 3.2 Internal Stability and Performance 3 3.3 Controller Parameterization 4 3.4 Robust Stability and Robust Performance 5 3.5 Robustness of Systems with Time Delays