Lecture 2 Differential geometry of curves 2.1 Definition of curves 2.1.1 Plane curves Implicit curves f(, y)=0 Example:x2+y2=a2 It is difficult to trace implicit curves It is easy to check if a point lies on the curve Multi-valued and closed curves can be represented
Lecture 4 Introduction to Spline Curves 4.1 Introduction to parametric spline curves Parametric formulation =r(u),y=y(u), z=2(u) or R=R(u)(vector notation) Usually applications need a finite range for u(e.g. 0
Spring 2003 1661AC22 Longitudinal Dynamics For notational simplicity, let X=Fn, Y= Fu, and Z= F aF Longitudinal equations(1-15 )can be rewritten as mi=X+X2- mg cos(0+△X