点击切换搜索课件文库搜索结果(1702)
文档格式:DOC 文档大小:51.5KB 文档页数:1
定理设A是数域K上的n阶方阵.如果A的特征值全属于K,则A在K上相似于 Jordan形矩阵,并且在不计 Jordan块顺序的意义下 Jordan形是唯一的. 证明:此定理就是上一定理用矩阵的语言叙述出来 Jordan标准形的计算方法:
文档格式:PPT 文档大小:231KB 文档页数:11
1.n维向量的概念 定义2所谓数域P上一个n维向量就是由 数域P中n个有次序的数a1,a2,…,an所组 成的数组,这n个数称为该向量的n个分量,第 i个数a称为第i个分量 分量全为实数的向量称为实向量, 分量全为复数的向量称为复向量
文档格式:DOC 文档大小:143KB 文档页数:3
2.1.4向量组的线性等价和集合上的等价关系 定义(线性等价)给定Km内的两个向量组
文档格式:PPT 文档大小:239.5KB 文档页数:13
一、n元线性方程组 1设线性方程组nx1+an2x2+…+amxn=b若常数项b2,…,bn不全为零,则称此方程组为非1,02,齐次线性方程组;若常数项b,b2bn全为零
文档格式:PPT 文档大小:348KB 文档页数:26
若干个同维数的列向量(或同维数的行向量) 所组成的集合叫做向量组.
文档格式:PPT 文档大小:1.96MB 文档页数:114
5.1 向量空间的定义 一、向量空间概念的引入 二、向量空间的定义 三、向量空间的例子 四、向量空间的基本性质 5.2 向量的线性相关性 5.3 基维数和坐标 一. 基 二. 维数 三. 关于基和维数的几个结论 四. 坐标 五. 过渡矩阵及向量在不同基下坐标的关系 六. 过渡矩阵的性质 5.4 子空间 5.5 向量空间的同构 第六章 线性方程组 6.1 消元解法 6.3 齐次线性方程组解的结构 6.4 一般 线性方程组解结构 6.5 秩与线性相关性 6.6 特征向量与矩阵的对角化 第七章 线性变换 7.1 线性变换的定义及性质 7.2 线性变换的运算 7.3 线性变换的矩阵 7.4 不变子空间 7.5 线性变换的本征值和本征向量 第八章 欧氏空间 8.1 欧氏空间的定义及基本性质 8.2 度量矩阵与正交基 8.3 正交变换与对称变换 8.4 子空间与正交性 8.5 对称矩阵的标准形
文档格式:DOC 文档大小:162KB 文档页数:2
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.2子空间与商空间 4.2.4 子空间的直和与直和的四个等价定义 4.2.5 直和因子的基与直和的基 4.2.6 补空间的定义及存在性
文档格式:PDF 文档大小:172.36KB 文档页数:5
本章是为了介绍泛函分析中的一些基本概念并提供全书的基础知识 正如前言中所提到的,泛函分析的基础建立在集合的两种结构之上,一种是 代数结构即线性结构,另一种是拓扑(本书中体现为度量)结构.本章将首先介 绍线性空间、度量空间、赋范空间、内积空间以及拓扑空间的公理系统,讨论它 们之间的相互关系;
文档格式:PPT 文档大小:975KB 文档页数:30
物理和数学有着深刻的联系。 二十一世纪是量子数学的时代(可称为是无穷维数学的时代 ) 量子数学的含义是指我们能够恰当地 理解分析、几何、拓扑和各式各样的非 线性函数空间的代数
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.V×V上的一个函数,如果满足 (i)(·,·)对第一个变量是线性的 (i)(a,B)=(B (ii1)ya∈V,(a,a)≥0,且(a,a)=0分a=0 则称(a,B)为向量a,B的内积,具有内积的复线性空间称为酉空间(欧氏空间在复线性 空间上的推广)
首页上页163164165166167168169170下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1702 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有