点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:886.9KB 文档页数:12
本文證明了在無限域Ω上,具條件(K)的核:K(s,t)在Ω×Ω上可測,且$\\begin{array}{l}(i)k(s,t) = O(\\frac{1}{{n - \\delta }}),r = {\\rm{||s - t}}|| \\to ,\\delta > 0\\\\s = ({s_1},{s_2}, \\ldots \\ldots {s_n}),t = ({t_1},{t_2}, \\ldots \\ldots {t_n})\\\\(ii)K(s,t) = O(\\frac{1}{{{p^n} + \\alpha }}),\\rho = \\sqrt {||s|{|^2} + ||t|{|^2}} \\to \\infty ,\\alpha > o,\\end{array}$所確定的積分算子是由L2(Ω)映入L2(Ω)的全連續算子。這裏Ω是n維歐氏空間Rn中的域,又證明在條件(K*)——條件(K)加設K(s,t)在s≠t處連續——的條件下,則是由有界連續函數空間C*(Ω)映入C*(Ω)的全連續算子。關於有限域的情形是有ΜИХЛИН氏(1)所推算的,現在對於遠處的性能加設了在(ii)的限製下,就可以推到無線域情形,它的推演依靠著核K2(s,t)=$\\int_\\Omega ^k {(s,u)} \\overline {k(t,u)} du$的性能而獲得的,主要結果是由定理1、2的證明騎著重要的作用
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质: 1)E=E 2)(A)=A 3)(kA)*=kA 4)(A+B)=a+B 5)(AB)'=B'A' 如果A=A,则称A是一个厄米特变换
文档格式:PPT 文档大小:189KB 文档页数:6
由第一章知:显函数y=f(x),也可写成F(x,y =y-f(x)=0.由方程F(x,y)=0确定的隐函数可能 有两种情形:y是x的函数y=f(x)或x是y的函 数x=(y);但并非所有隐函数都可化为一个显函 数.如y-esy+x2y2=0. 因而有必要研究隐函数的求导方法,下面通过几个例 子来介绍
文档格式:PDF 文档大小:194.87KB 文档页数:2
概念题: 1.若下列反应中的气体是理想气体,则K=Kx=K=K的反应是 ()CaCO3 =CaO(s)+CO2(g) (2)N2O4(g)=2O2(g) (3)2n(s)+32(g)=2zno(s)+2SO2(g) (4)CO(g)+2O(g)=C2(g)+H2(g)
文档格式:DOC 文档大小:22KB 文档页数:2
1. int m=5,y=2; y+=y-=m*=y; 其中 y= 2. int s=6; s%2+(s+1)%2 的值为
文档格式:DOC 文档大小:143.5KB 文档页数:2
第四章4-3线性映射与线性变换(续) 4.3.4线性变换的定义与运算 定义线性空间到自身的线性映射称为线性变换,记Hom(V,V)为Endr(V)或End (V)。 例恒同变换 E:V→V, >a. 例投影(射影)设V=V1V2,Va∈V,a=a+a2(a1eV,a2∈V2),定义V到 V的投影P(a)=a1,V到V2的投影P2(a)=a2 定义End(V)中的运算(加法、数乘和乘法) 加法定义为(A+)(a)=A(a)+B(a)(Va∈V) 数乘定义为(kA)(a)=k(A(a)),其中k∈K; 乘法(复合)定义为(AB)(a)=A(B(a)
文档格式:DOC 文档大小:35.5KB 文档页数:2
利用微分估算误差限举例 例:设某机器上一个圆形的铁片零件的搬进的设计要 求为 r=100±05mm 试求这个园形铁片的面积的绝对误差限和相对误差 限 解:由S=πr2得: Ids=2T dr =2TT 100 0.5=314 mm T·r dIn(s)= dr=1/100 S· 答:(略)
文档格式:PPT 文档大小:421.5KB 文档页数:12
万有引力定律>开普勒定律 太阳位置(0,0) 时刻t:天体位置(xiyi),速度( Viy) r2=x2+y2,加速度大小a=k/(2) 加速度矢量( aixaijy)=(lax-ar ti+1= t+ d: Vi+1,x=Vix+aixd Vi+1,y=Viy+aixd; d, Yi+1= yi Vi+1,y d ■从初始位置和初速度开始,一段段画出轨道
文档格式:DOC 文档大小:412.5KB 文档页数:13
第五章向量分析 习题讨论:曲线、曲面积分的计算 习题讨论题 1.计算积分:x2d,C:x+y2+z2=1 x+y+z=0' 2,计算积分:1-cos dx+sin+cos ydx, x xx) 沿任一条不与轴相交的曲线。 3,计算1=2mx2+y2,其中X=ax+by 1XdY-Ydx , ad-bc≠0,C为包围原点的闭曲线 4,计算s,j=ad 其中S:x2+y2+z2=a2,外法线为曲面正向。 5,设函数满足条件:
文档格式:PPT 文档大小:179KB 文档页数:22
A bank has sold for $300,000 a European call option on 100,000 shares of a nondividend paying stock S=49,K=50,=5%,=20% T=20 weeks,μ=13%
首页上页1516171819202122下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有