微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
6-1基本概念及工程实例 (Basic concepts and example problems) 6-2挠曲线的微分方程(Differential equation of the deflection curve) 6-3用积分法求弯曲变形 Beam deflection by integration 6-4用叠加法求弯曲变形 (Beam deflections by superposition)
13-1概述(Introduction) 13-2杆件变形能的计算( Calculation of strain energy for various types of loading 13-3互等定理(Reciprocal theorems) 13-4单位荷载法·莫尔定理(Unit-load method mohr's theorem) 13-5卡氏定理(Castigliano's' Theorem) 13-6计算莫尔积分的图乘法(The meth od of moment areas for mohr's integration)