网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(249)
《高等数学》课程教学资源:第九章 重积分
文档格式:DOC 文档大小:1.21MB 文档页数:32
一、二重积分的概念 1.曲顶柱体的体积 设有一空间立体,它的底是xoy面上的有界区域D,它的侧面是以D的边界曲线为 准线,而母线平行于轴的柱面,它的顶是曲面z=f(xy)。 当(x,y)∈D时,f(x,y)在D上连续且f(x,y)≥0,以后称这种立体为曲顶柱体
《微积分》课程教学课件(PPT讲稿)第二章 重积分(2.6)重积分小结
文档格式:PPT 文档大小:1.09MB 文档页数:47
第一部分:内容小结 一.二重积分
《高等数学》课程教学资源:第十章(10.1)Gauss 公式
文档格式:PPT 文档大小:627.5KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
《高等数学》课程教学资源:第九章(9.6)重积分应用
文档格式:PPT 文档大小:569.5KB 文档页数:30
重积分的应用 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相应 地分成许多部分量,且U等于部分量之和),并且 在闭区域D内任取一个直径很小的闭区域do时, 相应地部分量可近似地表示为f(x,y)do的形式, 其中(x,y)在do内.这个f(x,y)do称为所求量U 的元素,记为dU,所求量的积分表达式为
《高等数学》课程教学资源:第九章(9.4)三重积分及其计算
文档格式:PPT 文档大小:579KB 文档页数:25
三重积分及其计算 三、三重积分的概念 将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义
《高等数学》课程教学资源:第十章(10.5)Stokes 公式
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
《微积分》课程教学课件(PPT讲稿)第二章 重积分(2.1)重积分的概念与性质
文档格式:PPT 文档大小:612KB 文档页数:26
一、二重积分的概念与性质 二、三重积分的概念与性质
《高等数学》课程教学资源:第九章 重积分(9.6)重积分应用
文档格式:PPT 文档大小:569.5KB 文档页数:30
重积分的应用 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相应 地分成许多部分量,且U等于部分量之和),并且 在闭区域D内任取一个直径很小的闭区域do时, 相应地部分量可近似地表示为f(x,y)do的形式, 其中(x,y)在do内.这个f(x,y)do称为所求量U 的元素,记为dU,所求量的积分表达式为
《高等数学》课程教学资源:第九章 重积分(9.1)二重积分的概念和性质
文档格式:PPT 文档大小:747.5KB 文档页数:29
在一元函数积分学中,我们已经知道,定积 分是定义在某一区间上的一元函数的某种特定形 式的和式的极限,由于科学技术和生产实践的发 展,需要计算空间形体的体积、曲面的面积、空 间物体的质量、重心、转动惯量等,定积分已经 不能解决这类问题,另一方面,从数学逻辑思维 的规律出发,必然会考虑定积分概念的推广,从 而提出了多元函数的积分学问题
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第十章 曲线积分(10.1)Gauss 公式(1/2)
文档格式:PPT 文档大小:631KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了 Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时 Gauss公式也是计算曲面积分的一 有效方法
首页
上页
18
19
20
21
22
23
24
25
下页
末页
热门关键字
数据流
深度学习
农业学
接口设计
化学信息学
过渡
公司运作与管理
工程报价
法医病理
发动机
电路原理
电磁量
电磁
单级平衡过程
存在主义
城市设计
变频电路
变分法
变形计算
辨向电路
表演、台词
病原
病原菌
病原生物
波动光学
波形发生器
泊松分布
薄膜传感器]
材料分析
材料腐蚀与防护
材料与材料科学
财产法
财务管理、财务会计
财政学
财政制度
操纵
测角原理
测控电路设计
测控仪器设计
测量
搜索一下,找到相关课件或文库资源
249
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有