点击切换搜索课件文库搜索结果(261)
文档格式:PPT 文档大小:943.5KB 文档页数:23
设函数y=f(x)在a,b)内图形如下图: y=f(x)/ 在:处的函数值()比它附近各点的函数值都要小 而在处的函数值()比它附近各点的函数值都要大; 但它们又不是整个定义区间上的最小、最大者,而且 A将这样的点称为极小值点、极大值点
文档格式:PPT 文档大小:352.5KB 文档页数:6
类似于一元函数的广义积分对于二元函数也有两 类广义二重积分.即可分为积分区域无限与被积函数无 界两种下面只研究无界区域上的二重积分的计算方法 定义3设D是xoy面上的无界区域,f(x2y)在D上连续且G 是D上的任意一个闭区域上若G以任何方式无限扩展且 趋于D时,均有limf(x,y)dxdy=1
文档格式:PPT 文档大小:352.5KB 文档页数:6
类似于一元函数的广义积分对于二元函数也有两 类广义二重积分.即可分为积分区域无限与被积函数无 界两种下面只研究无界区域上的二重积分的计算方法 定义3设D是xoy面上的无界区域,f(x2y)在D上连续且G 是D上的任意一个闭区域上若G以任何方式无限扩展且 趋于D时
文档格式:PPT 文档大小:968KB 文档页数:18
通过上节的学习知道:任何一个幂级数在其收敛区间内均可表示成一个函数(即和函数)但在实际中为了便于研究和计算,常常需将一个函数在某点附近表示成一个幂级数.这正好和原来“求一个幂级数的和函数”问题相反. 下面将解决这样一些问题:
文档格式:PPT 文档大小:968KB 文档页数:18
通过上节的学习知道任何一个幂级数在其收敛区间 内,均可表示成一个函数即和函数)但在实际中为了便于 研究和计算,常常需将一个函数在某点附近表示成一个幂 级数这正好和原来“求一个幂级数的和函数”问题相反 下面将解决这样一些问题:
文档格式:PPT 文档大小:372KB 文档页数:22
在电路网中每两点之间都有中继电路群需求,但并不是任两点都有物理传输链路。 根据两点间最短传输路径将该两点间的电路需求量加载到这条传输路径上去:设a25=10是节点2和5之间的电路需求,节点2和5之间的最短传输路径为2-1-3-5,则加载过程
文档格式:PPT 文档大小:499.5KB 文档页数:14
由6.1知定积分是一个复杂和式的极限,但要想通过 求积分和的极限来得到定积分的值,却非常困难;下面 寻求一种计算定积分的非常简便的新方法——牛顿莱布 尼兹(Netwon-Laibniz-)公式计算法. 一.积分上限函数
文档格式:PPT 文档大小:1.01MB 文档页数:25
一只与区间长度有关,与区间的位置无关。即X落在两 个长度相等的区间内的概率相等。具有上述特点的随 机变量便是均匀分布的随机变量。 如:测量物体长度时读数的舍入误差服从均匀分 布。在(a,b)上随机掷质点
文档格式:PPT 文档大小:444.5KB 文档页数:13
一、原函数的定义 问题:若某一函数的导数为f(x),求这一个函数 设这函数为F(x),则 定义1设f(x)定义在区间上,若存在函数F(x),el,有 则称F(x)是已知函数f(x)在该区间上的一个原函数
文档格式:PPT 文档大小:899.5KB 文档页数:34
微分中值定理包括罗尔定理、拉格朗日中值定理、柯西中值定理 一.罗尔(Rolle)定理 定理1(罗尔定理)设函数f(x)满足下列条件: (1)在闭区间[a,b]上连续; (2)在开区间(a,b)上可导; (3)f(a)=f(b);
首页上页2021222324252627下页末页
热门关键字
搜索一下,找到相关课件或文库资源 261 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有