等效换热系数是热连轧机工作辊温度场仿真模型的核心输入参数,多采用遗传算法优化得到,某1800 mm 热连轧机存在品种、规格交替轧制,等效换热系数的准确计算比较困难.选取多组典型工艺条件下的工作辊下机后表面温度作为优化目标,采用多目标遗传算法进行优化,并通过改变遗传算子有效避免了算法早熟及局部收敛等问题,获取了具有较强适应性的等效换热系数.仿真和实测数据的对比结果证明了优化模型的可靠性.利用仿真模型分析了主要工艺参数对工作辊热凸度的影响,并提出同宽交替时,工作辊热凸度随轧制进程呈指数变化,而在品种、规格交替编排轧制工艺下相邻带钢轧制时工作辊热凸度存在6-21.8μm 的波动,且随轧制进程趋于稳定
针对锂离子电池荷电状态(Stage of charge,SOC)在线估计精度不高,等效电路模型法估计精度与模型复杂度相矛盾的问题,本文对扩展卡尔曼滤波算法进行了改进,并以电池工作电压、电流为输入,对应等效电路模型法的SOC估计误差为输出,采用极限学习机算法,建立基于输入输出数据的SOC估计误差预测模型,采用物理–数据融合方法,基于误差预测模型,建立了等效电路模型法结合极限学习机的锂离子电池SOC在线估计模型。仿真结果表明,改进扩展卡尔曼滤波算法提高了算法的估计精度,而物理–数据融合的锂离子电池SOC在线估计模型减小了由电压、电流测量所引入的估计误差,克服了等效电路模型法估计精度与模型复杂度之间相矛盾的问题,进一步提高了SOC的估计精度,满足估计误差不超过5%的应用需求