点击切换搜索课件文库搜索结果(411)
文档格式:DOC 文档大小:44KB 文档页数:2
解方程是代数中的一个基本的问题,特别是在中学所学代数中,解方程占有 重要地位.这一章和下一章主要讨论一般的多元一次方程组,即线性方程组. 线性方程组的理论在数学中是基本的也是重要的内容. 对于二元线性方程组
文档格式:PPT 文档大小:272.5KB 文档页数:13
对一般的数字行列式,如果它的元素之间没有特定的规律, 其计算方法是: 1)利用行列式性质把它化为上三角或下三角行列式,则 行列式的值等于其主对角线上元素的连乘积; 2)选定某一行(列),利用行列式性质把其中元素尽可 能多的化为0;然后按这一行(列)展开,如此继续下去 可得结果
文档格式:PDF 文档大小:4.7MB 文档页数:508
1.区域等概念 邻域U(P,8)={P|PP|<8},内点,边界点,开集,(开)区 域闭区域,边界点,有界点集,有界(开或闭)域,n维空间{(x1,x2, …,xn)},它的点及坐标x,n维空间中两点P(x1,x2,…,xn)与Q (y,y,…y)间的距离 y2-dta 等简单概念(叙述略,见教材)
文档格式:PPT 文档大小:1.64MB 文档页数:50
§1 数理统计中的几个概念 §2 数理统计中常用的三个分布 §3 一个正态总体下的统计量的分布 §4 两个正态总体下的统计量的分布
文档格式:PPT 文档大小:631KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了 Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时 Gauss公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:631KB 文档页数:32
前面我们将 Newton-Lebniz 公式推广到了平面 区域的情况,得到了Green 公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green 公式做进一步推广,这 就是下面将要介绍的Gauss 公式,Gauss 公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss 公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:548KB 文档页数:16
在生产实践中,为了提高经济效益,必须要 考虑在一定的条件下,怎样才能是2用料最省, 费用最低,效率最高,收益最大等问题。这类问 题在数学上统统归结为求函数的最大值或最小值 问题。最值问题主要讨论问题的两个方面:最值 的存在性;最值的求法
文档格式:PPT 文档大小:631KB 文档页数:32
一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:DOC 文档大小:232.5KB 文档页数:2
第四章4-3线性映射与线性变换 4.3.1线性映射的定义 定义设U,V为数域K上的线性空间,φ:U→V为映射,且满足以下两个条件: i)、(a+)=(a)+(),(a,B∈U); i)、(ka)=k(a),(a∈U,k∈K), 则称为(由U到V的)线性映射, 由数域K上的线性空间U到V的K的线性映射的全体记为Hom(U,V),或简记为 Hom(U,). 定义中的i和)二条件可用下述一条代替 (ka+1)=k(a)+kq(B),(a,B∈U,k,l∈K)
文档格式:PPT 文档大小:548KB 文档页数:16
最大值、最小值问题 在生产实践中,为了提高经济效益,必须要 考虑在一定的条件下,怎样才能是2用料最省, 费用最低,效率最高,收益最大等问题。这类问 题在数学上统统归结为求函数的最大值或最小值 问题。最值问题主要讨论问题的两个方面:最值 的存在性;最值的求法
首页上页2324252627282930下页末页
热门关键字
搜索一下,找到相关课件或文库资源 411 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有