点击切换搜索课件文库搜索结果(365)
文档格式:PPT 文档大小:745KB 文档页数:29
一、问题的提出 二、曲面的面积 三、质心 四、转动惯量 五、引力 六、小结
文档格式:PPT 文档大小:631KB 文档页数:32
前面我们将 Newton-Lebniz 公式推广到了平面 区域的情况,得到了Green 公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green 公式做进一步推广,这 就是下面将要介绍的Gauss 公式,Gauss 公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss 公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:88KB 文档页数:5
广州大学:《数学分析》课程教学资源(PPT课件讲稿,第三版)第十章 定积分的应用(10.4)微元法旋转曲面面积
文档格式:PPT 文档大小:627.5KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:1.5MB 文档页数:29
一、问题的提出 二、曲面的面积 三、平面薄片的重心 四、平面薄片的转动惯量 五、平面薄片对质点的引力 六、小结思考题
文档格式:PPT 文档大小:769.5KB 文档页数:27
一.平面区域D的面积 二.空间立体Ω的体积 三.曲面的面积 四.质量 五.重心 六.转动惯量 七.万有引力
文档格式:PPT 文档大小:67KB 文档页数:1
高斯公式:=Pdydz+dx+ Rdxdy. 简要证明设Ω是一柱体,下边界曲面为1:z=z1(x,y),上 边界曲面为2:=2(x,y),侧面为柱面3;Σ1取下侧,Σ2取上侧, Σ3取外侧. 根据三重积分的计算和对坐标的曲面积分的计算得
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:631KB 文档页数:32
一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式。 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
首页上页2425262728293031下页末页
热门关键字
搜索一下,找到相关课件或文库资源 365 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有