点击切换搜索课件文库搜索结果(3733)
文档格式:PPT 文档大小:433.5KB 文档页数:12
第四章随机变量的数字特征 4-4协方差 1、定义 COV(, Y)=E(X-EX)(Y-EY)=EXY-EXEY 为随机变量X,Y的协方差.而COV(X,X)=DX COV(X,Y) PDxDy为随机变量XY的相关系数。 Pxy是一个无量纲的量;若pxy=0, 称XY不相关此时COVX,Y)=0 定理:若X,Y独立,则X,Y不相关
文档格式:DOC 文档大小:109KB 文档页数:14
设fx)是定义在闭区间[ab]上的连续函数,如果x∈[ab]使 得f(x)=0则称x是fx)的一个零点 从几何图形看,函数f(x)的零点就是曲线y=f(x)与x轴的交 点。这个事实对我们求数值解很有启发作用 提示:函数f)的零点其实也就是(非线性)方程fx)=0的 解,所以求函数的零点问题也就是非线性方程求解的问题。 结论:由高等数学中的界值定理可知,若fa)f(b)<0,方程 f(x)=0在[ab内一定有解 求函数零点的方法有对分法,牛顿法和不动点算法
文档格式:PDF 文档大小:77.45KB 文档页数:12
1.1R\的极限理论 在线性代数中我们学习了n维向量空间V={x1…x)x,∈R,1=1,…,n我们在 V,中定义了加法和数乘.特别的我们还定义了V,中的内积(,) 设x=(x1…xn),y=(1…,yn)是V中的向量,定义x与y的内积(x,y)为
文档格式:PPT 文档大小:917.5KB 文档页数:33
多元函数 定义11.2.1设D是R”上的点集,D到R的映射 f:D→R x}2 称为n元函数,记为z=f(x)。这时,D称为f的定义域,f(D) z∈R|z=f(x),x∈D}称为f的值域,={(x,z)∈R|z=f(x),x∈D称为 f的图像
文档格式:PDF 文档大小:170.84KB 文档页数:21
数项级数 设 1 x , 2 x ,…, n x ,…是无穷可列个实数,我们称它们的“和” 1 x + 2 x +\+ xn +\ 为无穷数项级数(简称级数),记为∑ ∞ n=1 n x ,其中 n x 称为级数的通项或一 般项
文档格式:PPT 文档大小:406KB 文档页数:11
一、反函数的求导法则 定理4.设函数y=f(x)在x的某领域内连续且严格单 调,y=f(x)在x处可导,且f(x)≠0.则y=f(x)的反 函数x=(y)在y处可导且
文档格式:PPT 文档大小:1.52MB 文档页数:29
1规划模型的基本概念 规划模型的一般形式三要素 (1)决策变量,通常是该问题要求解的那些未知量,不妨用n维向量x=(1x2,xn)表示,当对x赋值后通常称为该问题的一个解 (2)目标函数,通常是该问题要优化(最大或最小)的那个目标的数学表达式,它是决策变量x的函数,可以记作f(x) (3)约束条件,由该问题对决策的限制条件给出,即x允许取值的范围x∈,称为可行域。通常
文档格式:PPT 文档大小:296KB 文档页数:11
讨论导数,即讨论lim的极限是否存在,而不 是研究改变量本身.实践中,我们关心的是:当 自变量x有微小改变量x时,函数y相应的改变量 y与x有何关系,大小又如何? 先看一个实际例子:正方形的边长由x变到x+△x 时,其面积改变多少?由S=x2知:
文档格式:DOC 文档大小:199.5KB 文档页数:3
一.隐函数存在定理 1.设函数F(x,y)满足 (1)在区域D:x-a≤x≤x+a,y-b≤y≤y+b上连续 (2)F(x,y)=0 (3)当x固定时,函数F(x,y)是y的严格单调函数 则可得到什么结论?试证明之
文档格式:DOC 文档大小:389.5KB 文档页数:7
第六章常微分方程 附加条件 y(a)=yu,y(b)=y2 称为边值条件( boundary condition) 满足微分方程,并且适合定解条件的解称为微分方程的特解 (special solution) 微分方程的存在唯一性定理 存在唯一性定理:对一阶初值问题:=f(xy ,若二元函数 y(x0) f(x,y)在矩形D={(x,y):x-x0Ay-y0B}连续, 且偏导数(xy存在并有界则存在正数h,使得上述初值问题 在区间[x。-h,x+h上存在有唯一的解 证明思路:
首页上页2425262728293031下页末页
热门关键字
搜索一下,找到相关课件或文库资源 3733 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有