网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(990)
西南财经大学:《微积分》课程教学资源(PPT课件讲稿)第二章(2-2)函数的极限
文档格式:PPT 文档大小:700.5KB 文档页数:23
数列极限是考察数列在n→∞这一过程中的变化 总趋势(即有无极限).而对于函数y=f(x),当考察它的 变化总趋势时,因自变量的连续变化过程有许多情况, 如x→∞,x→-00,x→0,x→x,x→xi等
北京大学:《高等代数——数学分析》课程教学资源(讲义)第三章 幂级数
文档格式:PDF 文档大小:78.6KB 文档页数:15
+∞ 在函数级数∑un(x)中令un(x)=an(x-x),为最简单的幂级数,则我们得到形为 n=1 ∑an(x-x)\的函数级数,称之为x处展开的幂级数本章中我们将讨论幂级数的性质, n= 并证明从可导性而言,幂级数构成所有函数
西南财经大学:《经济数学基础》课程PPT教学课件(微积分)第三章 函数的导数与微分(3.3)反函数和复合函数的求导法则
文档格式:PPT 文档大小:406KB 文档页数:11
一、反函数的求导法则 定理4.设函数y=f(x)在x的某领域内连续且严格单 调,y=f(x)在x处可导,且f(x)≠0.则y=f(x)的反 函数x=(y)在y处可导且
温州大学:《高等代数》课程教学资源(PPT课件)第一章 多项式(1.7)多项式函数与多项式的根
文档格式:PPT 文档大小:566KB 文档页数:17
一、多项式函数 1.定义:设f(x)=a+ax+…+anxn∈F[x],对 Vc∈F,数f(c)=a+ac++anc∈F称为当 x=c时f(x)的值,若f(c)=0,则称c为f(x)在 F中的根或零点。 2.定义(多项式函数):设f(x)∈F[x],对 Vc∈F,作映射f:
《数学分析》课程电子教案(PPT课件)第十一章 Euclid空间上的极限和连续(11.2)多元连续函数
文档格式:PPT 文档大小:917.5KB 文档页数:33
多元函数 定义11.2.1设D是R”上的点集,D到R的映射 f:D→R x}2 称为n元函数,记为z=f(x)。这时,D称为f的定义域,f(D) z∈R|z=f(x),x∈D}称为f的值域,={(x,z)∈R|z=f(x),x∈D称为 f的图像
《数学分析》课程电子教案(PPT课件)第九章 数项级数(9.1)数项级数的收敛性
文档格式:PDF 文档大小:170.84KB 文档页数:21
数项级数 设 1 x , 2 x ,…, n x ,…是无穷可列个实数,我们称它们的“和” 1 x + 2 x +\+ xn +\ 为无穷数项级数(简称级数),记为∑ ∞ n=1 n x ,其中 n x 称为级数的通项或一 般项
清华大学:《微积分》课程教学资源_第六章 常微分方程(课后作业)
文档格式:DOC 文档大小:389.5KB 文档页数:7
第六章常微分方程 附加条件 y(a)=yu,y(b)=y2 称为边值条件( boundary condition) 满足微分方程,并且适合定解条件的解称为微分方程的特解 (special solution) 微分方程的存在唯一性定理 存在唯一性定理:对一阶初值问题:=f(xy ,若二元函数 y(x0) f(x,y)在矩形D={(x,y):x-x0Ay-y0B}连续, 且偏导数(xy存在并有界则存在正数h,使得上述初值问题 在区间[x。-h,x+h上存在有唯一的解 证明思路:
西南财经大学:《微积分》课程教学资源(PPT课件讲稿)第三章(3-3)反函数和复合函数的求导法则
文档格式:PPT 文档大小:406KB 文档页数:11
一、反函数的求导法则 定理4.设函数y=f(x)在x的某领域内连续且严格单 调,y=f(x)在x处可导,且f(x)≠0.则y=f(x)的反 函数x=(y)在y处可导且
西南财经大学:《经济数学基础》课程PPT教学课件(微积分)第二章 函数的极限与连续(2.6)连续函数
文档格式:PPT 文档大小:727.5KB 文档页数:29
连续函数是非常重要的一类函数也是函数的一种 重要的性态然界中的许多变量都是连续变化着的,即 在很短的时间内,们的变化都是很微小的这种现象反 映在函数关系上,就是函数的连续性;对函数曲线来说 就是从起点开始到终点都不间断 函数增量(改变量) 设函数y=f(x,当x从x变到x1时,自变量的改变 量(在x处的增量)记为A=xrx2.相应的函数从x 变到(x)时,其函数值之差
西南财经大学:《微积分》课程教学资源(PPT课件讲稿)第三章(3-6)函数的微分
文档格式:PPT 文档大小:296KB 文档页数:11
讨论导数,即讨论lim的极限是否存在,而不 是研究改变量本身.实践中,我们关心的是:当 自变量x有微小改变量x时,函数y相应的改变量 y与x有何关系,大小又如何? 先看一个实际例子:正方形的边长由x变到x+△x 时,其面积改变多少?由S=x2知:
首页
上页
24
25
26
27
28
29
30
31
下页
末页
热门关键字
Pdf
e
电子技术基础清华大学
q
MATLaB
Li
Foxpro
b
x
WINDOWS
o
l
Java编程
Fourier
ENGLISH
doc
DNA
Book
1D
2
AND
abc
b2
b2b
BUSINESS
br
Access
AUTOCAD
AT
《印刷设计》
../1
an
a1
a3
3g
3MAX
3s
18
《网络教学与学习》
《无机化学》
搜索一下,找到相关课件或文库资源
990
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有