点击切换搜索课件文库搜索结果(7286)
文档格式:PPT 文档大小:1.24MB 文档页数:167
本章教学基本要求: 1.了解直流电机主要结构,注意换向器和电刷的作用; 2.熟悉直流发电机和电动机基本工作原理,熟悉电枢反应,理解感应电势和电磁转矩这两个机电能量转换要素的物理意义,掌握求解它们的计算方法; 3.掌握直流电机的运行原理,电势、转矩平衡方程式,以及不同励磁方式的直流电机的工作特性; 4.了解直流电机的换向
文档格式:PPT 文档大小:264.5KB 文档页数:35
一、直流电机原理 二、电力拖动系统的动力学基础 三、直流电动机的电力拖动 四、变压器 五、三相异步电动机原理 六、三相异步电动机的电力拖动 七、同步电动机 八、电力拖动系统中电动机的选择
文档格式:PPT 文档大小:3.88MB 文档页数:45
一、鲜叶质量 二、黑茶的共同特点 三、黑毛茶的初制原理
文档格式:PDF 文档大小:948.62KB 文档页数:7
为提高单晶硅纳米切削表面质量的同时, 不影响加工效率, 以扫描电子显微镜高分辨在线观测技术为手段, 在真空环境下开展了单晶硅原位纳米切削实验研究.首先, 利用聚焦离子束对单晶硅材料进行样品制备, 并对金刚石刀具进行纳米级刃口的可控修锐.然后, 利用扫描电子显微镜实时观察裂纹的萌生与扩展, 分析了单晶硅纳米切削脆性去除行为.最后, 分别采用刃口半径为40、50和60 nm的金刚石刀具研究了晶体取向和刃口半径对单晶硅脆塑转变临界厚度的影响.实验结果表明: 在所研究的晶体取向范围内, 在(111)晶面上沿[111]晶向进行切削时, 单晶硅最容易以塑性模式被去除, 脆塑转变临界厚度约为80 nm.此外, 刀具刃口半径越小, 单晶硅在纳米切削过程中越容易发生脆性断裂, 当刀具刃口半径为40 nm时, 脆塑转变临界厚度约为40 nm.然而刀具刃口半径减小的同时, 已加工表面质量有所提高, 即刀具越锋利越容易获得表面质量高的塑性表面
文档格式:DOC 文档大小:97KB 文档页数:8
11.1主要功能 11.2实例操作 11.1主要功能 多元分析处理的是多指标的问题。由于指标太多,使得分析的复杂性增加。观察指标 的增加本来是为了使研究过程趋于完整,但反过来说,为使研究结果清晰明了而一味增加 观察指标又让人陷入混乱不清。由于在实际工作中,指标间经常具备一定的相关性,故人 们希望用较少的指标代替原来较多的指标,但依然能反映原有的全部信息,于是就产生了 主成分分析、对应分析、典型相关分析和因子分析等方法
文档格式:PPT 文档大小:138KB 文档页数:14
《机械原理》机构转化原理
文档格式:PPT 文档大小:4.38MB 文档页数:99
《机械原理》齿轮范成法加工原理
文档格式:PDF 文档大小:4.24MB 文档页数:27
超重力显著增大两相间的重力差,可用于加速固?液、液?液、液?气高温黏稠混和体的相分离速度;超重力具有定向性,避免搅拌等技术产生的熔体湍流返混,可用于深度脱除金属液中细小夹杂物;超重力条件下固?液界面张力微不足道,可容易实现微孔渗流;超重力条件下进行结晶凝固,按结晶顺序实现固?液分离,可用于制备梯度材料;超重力加速固?液分离,可细化凝固组织晶粒,但对非共晶熔体也易产生宏观偏析。将超重力技术应用于冶金及材料生产过程中,有望解决高温冶金和材料制备的一些难题,如复杂矿冶金渣有价组分的分离提取、冶炼渣中金属液的分离回收、多金属的熔析结晶分离、复杂矿直接还原铁的渣?金分离;在高端金属材料方面,应用超重力技术,有望解决近零夹物金属材料的精炼除杂难题,提高梯度功能材料、金属?陶瓷复合材料、多孔金属材料、器件材料表面电沉积修饰的制造水平。此外,在材料科学研究方面,超重力凝固可作为一种材料基因组高通量制备方法
文档格式:PDF 文档大小:1.53MB 文档页数:10
基于实际的工程参数建立了高压直流干扰电场计算模型,利用数值模拟计算技术对高压直流干扰大幅值管地电位的产生原因进行探究。考察接地极与管道之间的间距、管道防腐层类型、管道长度及土壤结构等因素对高压直流干扰下管地电位的影响规律,得到高压直流干扰大幅值管地电位是在接地极与管道距离较近、防腐层的绝缘性能较高、管道长度较大及上低下高的土壤电阻率分层结构共同作用下产生的
文档格式:PDF 文档大小:4.96MB 文档页数:8
研究了Co掺杂对还原氧化石墨烯(RGO)/Fe3O4复合材料结构、形貌和吸波性能的影响规律.采用一步水热法分别制备RGO/Fe3O4和Co掺杂的RGO/Fe3O4复合材料,通过扫描电子显微镜、X射线衍射仪和X射线光电子能谱分析Co掺杂对复合材料的微观形貌、相组成及表面元素价态的影响;利用矢量网络分析仪测定两种复合材料在2~18 GHz频率范围内的相对复介电常数和复磁导率,模拟计算了Co掺杂对RGO/Fe3O4复合吸波性能的影响规律.结果表明:部分Co参与了水热反应生成了CoCO3、Co3O4和Co2O3,还有部分Co以单质形式存在,其通过正负电荷吸引机制,影响Fe3+在氧化石墨烯(GO)表面的配位,使得负载在还原氧化石墨烯(RGO)表面的Fe3O4纳米颗粒部分迁移至RGO片层间;Co掺杂改善了复合材料的导电能力和磁损耗能力,使复合材料的吸波能力显著增强.反射率模拟结果表明:掺杂后与掺杂前相比,当匹配厚度d=2.00 mm时,最大反射损耗提高3.44 dB,有效吸收频带拓宽2.88 GHz;当匹配厚度d=2.50 mm时,最大反射损耗提高8.45 dB,有效吸收频带拓宽2.73 GHz.Co掺杂对RGO/Fe3O4复合材料的结构和形貌有显著影响,并有效改善复合材料的吸波性能
首页上页275276277278279280281282下页末页
热门关键字
搜索一下,找到相关课件或文库资源 7286 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有