点击切换搜索课件文库搜索结果(367)
文档格式:PDF 文档大小:486.74KB 文档页数:4
设计了基于数字信号处理器DSP的热连轧自动厚度控制(AGC)实时仿真器,建立了调厚过程压下系统和变形区的动态模型.仿真时,仿真器实时并行地计算带钢和轧机的模型, 计算机控制系统的控制器运行AGC软件,两者通过内存映像网实时交换数据,因此通过虚拟的对象实现了对AGC软件的实时离线调试
文档格式:PDF 文档大小:509.27KB 文档页数:4
分析武汉钢铁公司热连轧精轧机组主传动系统的振荡原因,并用仿真计算结果定性地解释了减小电网侧无功补偿装置的容量或者在控制回路加装带通滤波器(BPF)将是有利于抑制谐波的振荡现象的产生.还对改造为双闭环控制系统的可行性进行了初步分析
文档格式:PDF 文档大小:469.8KB 文档页数:4
以武钢1700mm精轧机主传动系统中控制对象特性参数的改变后系统动态响应品质变差为背景,利用遗传送代算法研究了双闭环控制系统中转速PI调节器参数的优化问题.数字仿真结果证明了该算法的有效性和合理性
文档格式:PDF 文档大小:509.98KB 文档页数:5
通过把轧制力方程和厚度控制方程在小范围内线性化、离散化,用递推最小二乘法辨识出系统的状态空间模型.给出了基于Kalman滤波法的最优信息融合算法,并针对热连轧这个复杂的多变量系统设计了异步信息融合估计算法.将模型用于热连轧机带钢厚度预测中,同时也预测带钢塑性系数Q.最后把实时预测出的带钢出口厚度和带钢塑性系数应用于带钢热连轧厚度控制系统,提高了带钢厚度质量
文档格式:PDF 文档大小:175.92KB 文档页数:5
为了解决电压型PWM整流器直接功率控制系统主电路参数设计问题,根据整流器在dq两相同步旋转坐标系中的数学模型建立了其功率控制数学模型.基于功率控制数学模型,结合整流器直接功率控制系统的特点,推得交流侧电感是由功率、功率滞环比较器环宽及开关平均频率决定的;直流侧直流电压是由交流电压、电感及负载决定的;突加负载时直流侧电容是由直流电压波动、功率、电感及负载决定的.根据上述影响主电路参数的诸多因素,提出交流侧电感、直流侧电压及直流侧电容的设计方法.计算机仿真和实验证明了本文提出的设计方法是可行的
文档格式:PDF 文档大小:2.28MB 文档页数:9
研究了一类具有状态时滞的多采样率离散时间控制系统,对这类系统给出了一种最优预见控制器的设计方法.首先利用离散时间系统提升技术,把所研究的系统转化成单一采样的扩大系统;然后利用构造扩大误差系统的方法引入积分器;再对扩大误差系统应用通常的线性二次型最优预见伺服系统设计方法设计控制器,从而得到原系统的最优预见控制器.同时还对扩大误差系统的能控性和能观测性进行了讨论,并通过数值仿真说明了控制器的有效性
文档格式:PDF 文档大小:422.93KB 文档页数:4
为了解决带有纯滞后的监控AGC系统的控制问题,提出了基于RBF神经网络的PID控制器与Smith预估器相结合的智能PID控制系统,并对传统监控AGC、应用Smith预估器的监控AGC及应用智能PID控制的监控AGC系统进行了仿真.结果表明,应用智能PID控制的监控AGC系统收敛速度明显加快,适应能力与鲁棒性比常规PID控制要好
文档格式:PDF 文档大小:274.54KB 文档页数:6
给出了板形板厚综合控制模型,提出了基于TH神经网络的动态矩阵设计方法并分析了其收敛特性.使用不变性原理对板形板厚综系统进行了解耦设计,并对板形板厚解耦神经网络预测控制系统,进行了仿真研究.结果表明神经网络可在儿百ns的时间内达到稳定状态,不仅满足了轧钢过程的快速性要求,而且控制精度也得到了提高
文档格式:PDF 文档大小:913.74KB 文档页数:7
采用贝叶斯统计学原理改进传统神经网络算法,通过在神经网络的目标函数中引入表示网络结构复杂性的约束项,避免网络的过拟合以提高网络的泛化能力.将改进的神经网络应用于济钢1700mm热连轧机带钢厚度预测中,其预报精度、训练时间和网络稳定性均优于传统神经网络预测;然后应用贝叶斯神经网络预测带钢塑性系数;最后将出口带钢厚度和带钢塑性系数的实时预测值综合应用于带钢热连轧厚度控制系统,改进了传统的厚度控制方式,进一步提高带钢质量
文档格式:PDF 文档大小:1.12MB 文档页数:108
1.1 单回路系统的结构组成 1.2 被控变量的选择 1.3 对象特性对控制质量的影响及操纵变量的选择 1.4 控制阀的选择 1.5 测量、传送滞后对控制质量的影响及其克服办法 1.6 控制器参数对系统控制质量的影响及控制规律的选择 1.7 系统的关联及其消除方法 1.8 单回路系统的投运和整定
首页上页2526272829303132下页末页
热门关键字
搜索一下,找到相关课件或文库资源 367 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有