相关文档

基于贝叶斯神经网络的带钢厚度预测与控制

采用贝叶斯统计学原理改进传统神经网络算法,通过在神经网络的目标函数中引入表示网络结构复杂性的约束项,避免网络的过拟合以提高网络的泛化能力.将改进的神经网络应用于济钢1700mm热连轧机带钢厚度预测中,其预报精度、训练时间和网络稳定性均优于传统神经网络预测;然后应用贝叶斯神经网络预测带钢塑性系数;最后将出口带钢厚度和带钢塑性系数的实时预测值综合应用于带钢热连轧厚度控制系统,改进了传统的厚度控制方式,进一步提高带钢质量.
团购合买资源类别:文库,文档格式:PDF,文档页数:7,文件大小:913.74KB
点击进入文档下载页(PDF格式)
已到末页,全文结束
点击下载(PDF格式)

浏览记录