点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:142.81KB 文档页数:15
紧集上的连续映射 为了将一元连续函数在闭区间上的重要性质推广到多元连续函 数,为此先定义多元函数在点集的边界点连续的概念。 定义 11.3.1 设点集 K ⊂ n R ,f : K→ m R 为映射(向量值函数), x K 0 ∈ 。如果对于任意给定的ε > 0,存在δ > 0,使得当 0 xx K ∈O( ,) δ ∩ 时
文档格式:PDF 文档大小:358.3KB 文档页数:64
单调有界数列收敛定理 定理2.4.1 单调有界数列必定收敛。 证 不妨设数列{ xn }单调增加且有上界,根据确界存在定理,由 { xn }构成的数集必有上确界β ,β 满足:
文档格式:PDF 文档大小:217.4KB 文档页数:27
高阶导数的实际背景及定义 物体在时刻t的瞬时加速度为当t→0时,它的平均加速度的 △t 极限值,即
文档格式:PDF 文档大小:340.11KB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
文档格式:PPT 文档大小:377KB 文档页数:15
紧集上的连续映射 为了将一元连续函数在闭区间上的重要性质推广到多元连续函 数,为此先定义多元函数在点集的边界点连续的概念。 定义 11.3.1 设点集 K  n R ,f : K→ m R 为映射(向量值函数), x K 0 
文档格式:PDF 文档大小:11.3MB 文档页数:586
第一章 实数集与函数 第二章 数列极限 第三章 函数极限 第四章 函数的连续性 第五章 导数和微分 第六章 微分中值定理及其应用 第七章 实数的完备性 第八章 不定积分 第九章 定积分 第十章 定积分的应用 第十一章 反常积分 第十二章 数项级数 第十三章 函数列与函数项级数 第十四章 幂级数 第十五章 傅里叶级数 第十六章 多元函数的极限与连续 第十七章 多元函数微分学 第十八章 隐函数定理及其应用 第十九章 含参量积分 第二十章 曲线积分 第二十一章 重积分 第二十二章 曲面积分 第二十三章 流形上微积分学初阶
文档格式:PDF 文档大小:1MB 文档页数:21
§1.1 函数 §1.2 四类具有特殊性质的函数 §1.3 复合函数与反函数,习题课 §2.1 数列的极限 §2.2 收敛数列,习题课 §2.3 函数的极限 §2.3 函数极限的定理,习题课 §1.4 无穷小与无穷大 ,习题课 §3.1 连续函数 §3.2 连续函数的性质,习题课 §4.1 实数连续性定理 §4.2 闭区间连续函数整体性质的证明,习题课 §5.1 导数 §5.2 求导法则与导数公式,习题课 §5.3 隐函数与参数方程求导法则 §5.4 微分,习题课 §2.5 高阶导数与高阶微分,习题课 §6.1 中值定理,习题课 §6.2 洛必达法则,习题课 §6.3 泰勒公式,习题课 §6.4 导数在研究函数上的应用,习题课
文档格式:PDF 文档大小:764.06KB 文档页数:16
§7.1 不定积分 §7.2 分部积分法与换元积分法,习题课 §7.3 有理函数的不定积分 §7.4 简单无理函数与三角函数的不定积分 §8.1 定积分 §8.2 可积准则 §8.3 定积分的性质 §8.4 定积分的计算,习题课 §8.5 定积分的应用 §8.6 定积分的近似计算,习题课 §9.1 数值级数,习题课 §9.2 函数级数,习题课 §9.3 幂级数,习题课 §9.3 傅 里 叶 级 数 ,习题课 §10.1 多 元 函 数 , 习 题 课 §10.2 二元函数的极限与连续 , 习 题 课
文档格式:PPT 文档大小:2.52MB 文档页数:27
讨论二维相平面轨线图分析是一种研究二阶非线性系统的轨线分布的图形方法 介绍、学习Lyapunov理论 介绍无源性在基于欧拉-拉格朗日方程的系统无源性设计、基于哈密顿方程的系统无源性设计等方面的应用。2.1 相平面分析的概念 2.2 二维系统轨线相图构造方法 2.3 线性系统的轨线相平面分析 2.4 非线性系统的相平面分析 2.5 极限环的存在 2.6 轨线图在加热用电炉控制应用
文档格式:PPT 文档大小:3.03MB 文档页数:49
第一类曲线积分 设一条具有质量的空间曲线L上任一点(x,y,z)处的线密度为 p(x,y,z)将L分成n个小曲线段L(i=1,2,…n),并在l上任取一点 (5,n,5),那么当每个L1的长度△都很小时,L的质量就近似地等于 i2li p(5,n,5)△,于是整条L的质量就近似地等于 ∑ (5,n,5)S1 当对L的分割越来越细时,这个近似值的极限就是L的质量
首页上页2829303132333435下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有