点击切换搜索课件文库搜索结果(337)
文档格式:PDF 文档大小:4.77MB 文档页数:10
矿用车辆无人驾驶是实现矿山无人化开采的关键技术, 而路径跟踪控制是无人驾驶系统的核心技术之一.路径跟踪控制系统是多变量、多约束系统, 采用传统方法在多约束条件下存在执行器饱和等问题.针对上述问题, 本文引入模型预测控制方法, 通过考虑车辆的姿态与位置之间的关系, 以跟踪路径的横向偏差最小化和车辆的航向角偏差最小化为目标对预测控制的目标函数进行优化, 以获得车辆速度和铰接角度的最优控制量, 实现对多变量、多约束系统的求解.针对模型预测控制算法不能提前判断道路曲率突变而导致跟踪超调的问题, 提出基于预瞄距离的控制方法, 通过提前判断道路突变信息, 提高车辆路径跟踪精确性和稳定性.使用Matlab/Adams仿真软件进行对比仿真试验, 结果表明: 使用模型预测跟踪控制器能够解决多变量、多约束系统控制问题, 有效防止执行器饱和; 而使用基于预瞄距离的模型预测跟踪控制器能够使车辆的横向位置偏差保持在±0.04 m, 航向角偏差保持在±1.8°范围内, 相较于改进前的控制器, 其横向位置偏差减少了80.9%, 航向角偏差减少了59.1%, 证明改进后的控制器具有更好的横向稳定性和精确性
文档格式:PDF 文档大小:1.24MB 文档页数:11
全球钢铁产品很大比例上是通过连铸工艺生产的,而中间包保护浇注是连铸生产高品质洁净钢的关键环节之一。长水口是连接于钢包和中间包之间的耐材质通道,长水口的发明和使用在连铸技术发展过程中起到了重要的作用,并与中间包的保护浇注效果有着紧密的联系,具体包括防止稳态和非稳态浇注过程中的二次氧化和来源于空气/渣/耐材/引流砂等的污染。本文基于中间包钢液污染的来源和形式,引申出了长水口在这些方面可以起到的潜在作用,并回顾了长水口在连铸发展早期的发明、工业实验效果和不断优化的历程。工业实践证实了长水口优良的保护浇注功能,但其实际效果与长水口的结构和操作工艺紧密相关。因此,分析了不同的长水口结构(包括工业化的长水口和一些新的设计理念)对保护浇注的影响,重点评述了喇叭型长水口在改善钢液洁净度和提高生产效率方面的优势。讨论了长水口的浸入深度和偏斜等操作工艺参数与保护浇注之间的关系。结合新时期炼钢?连铸的发展形势,指出了未来长水口结构功能一体化的发展方向,具体表现在长寿化、轻量化、多功能化和绿色化等方面
文档格式:PDF 文档大小:775.65KB 文档页数:13
随着机动车保有量快速增长,机动车排放成为大部分大中城市大气中PAHs及其衍生物的主要来源之一。因此,基于以往的研究成果,汇总了台架实验、车载实验、隧道实验、路边实验等常用的机动车尾气采集方法,对机动车来源PAHs及其衍生物的排放特征(排放因子、气粒分配规律、成分谱研究以及机动车车型、工况和行驶里程的影响等)进行了总结,为不同研究需求下实验方法的选取以及机动车减排措施的制定提供科学参考。此外,为缓解能源问题和机动车排放污染问题,中国计划2020年在全国范围内推广使用车用乙醇汽油。由于乙醇汽油与普通汽油的性质存在诸多不同,乙醇汽油对机动车排放的影响也引起了研究者们的关注,因此分析了乙醇汽油实施对机动车尾气PAHs及其衍生物的污染特征变化的影响,以期为该领域未来的研究方向提供建议,为机动车污染防控研究提供科学合理的参考
文档格式:PDF 文档大小:421.83KB 文档页数:10
在调研国内外众多金属矿山和收集大量相关文献的基础上, 综述了国内外金属矿山开采现状及研究进展, 聚焦深部开采主要工程技术难题, 从开采动力灾害预测防控、深井高温热害控制治理、深井提升、深井开采方法工艺变革、深部选矿新技术、智能无人采矿这六个方面, 提出了解决我国深部开采难题的战略建议, 结果表明: (1)5000m开采深度将会是我国金属矿深部开采中长期战略研究目标; (2) 无绳垂直提升技术具有提升效率高, 使用限制少的特点, 建议我国重点针对此类技术装备研发; (3)将深部矿产资源开采与深部能源开发相结合, 可以有效降低深部降温成本, 是解决深部采矿经济性的新途径; (4) 新一代采矿技术需对原有的采矿模式和开采工艺进行变革, 机械连续切割破岩技术是未来超深矿井建设的重要发展方向; (5) 充填法是保证深部开采安全最有效的方法之一,应对充填材料、充填工艺进行更深入的研究; (6) 我国尚不具备全面推广遥控智能化无人采矿的条件, 可以通过产学研联合攻关等方式逐步提高矿山生产自动化和遥控智能作业水平
文档格式:PDF 文档大小:1.25MB 文档页数:11
在50℃的地热水中进行了一个月的现场试验。利用失重试验对若干种金属材料在不同暴露条件下的腐蚀速度进行了测定;利用掛片对某些表面保护层的保护性能进行了观察比较;并用线性极化方法测定了间浸条件下金属腐蚀速度随时间的变化关系。试验结果表明:碳钢和低合金钢在低温地热系统中具有相似的耐蚀性,全浸条件下均匀腐蚀速度为0.05毫米/年左右,半浸为0.2毫米/年左右,气相为0.3毫米/年左右,在最恶劣的间浸条件下也不超过0.5毫米/年。如果能设法防止氧进入系统,其腐蚀速度可以大大降低。2Cr13不锈钢有良好的耐均匀腐蚀能力,但半浸条件下在水线附近出现了孔蚀。铝由于严重的孔蚀,不宜在这样的体系中采用。铜及铜合金在氧和硫化氢的联合作用下腐蚀被大大加速了。在保证较严格的施工条件下,RTF涂料在这种体系中能成功地保护金属基体。环氧煤沥青相对经济易得、施工简便,可对基体进行较好的保护,是用于这种体系中有希望的涂层
文档格式:PDF 文档大小:904.07KB 文档页数:5
研究了EAF-LF-VD-CC流程冶炼气瓶钢30CrMo时精炼过程中含MgO·Al2O3夹杂物的生成和转化,对夹杂物进行了三维分析观察.研究结果表明:LF精炼30min后夹杂物中Mg含量减小,Ca含量增加,MgO·Al2O3夹杂物消失.LF精炼后期Mg含量变化不大,Ca含量减小,未出现MgO·Al2O3夹杂物;VD精炼过程中夹杂物中的Mg含量增加,Ca含量变化不大,重新生成了MgO·Al2O3夹杂物;精炼过程中MgO·Al2O3夹杂物可以向复合夹杂物转变的,但为防止精炼后期MgO·Al2O3夹杂物重新生成必须保证钢液中具有一定的钙含量
文档格式:PDF 文档大小:402.65KB 文档页数:5
应用INSTRON刚性伺服试验机对不同灰砂比的充填体进行了劈拉试验,测得荷载-位移和应力-应变全曲线.结合测得的力学参数计算出相关能量耗散特征参数,分析了不同情况下破坏过程的能量耗散变化规律,并通过数据统计回归建立了各种能量耗散指标与其影响因素的函数关系.实验结果显示:充填体只需吸收极少能量即可满足拉伸破坏所需,拉伸破坏是影响充填体断裂性质的主导因素.为防止充填体处于受拉环境,在矿房回采时应采用边孔控制爆破和不耦合装药,优化爆轰波破岩途径,减少欠挖超挖,保证矿柱形态规整,使充填体处于非拉区域以改善其受力状况;同时在矿房充填时应对需布设工程或应力集中区域等关键部位适当加大灰砂比,以增强充填体吸收破坏能量的能力
文档格式:PDF 文档大小:0.98MB 文档页数:6
以玻璃包覆FeCoSiB合金微丝为对象,研究了氢氟酸含量和反应温度对包覆层去除过程的影响,以及缓蚀剂对Fe-CoSiB芯丝的保护效果.结果表明:在反应温度为25℃的条件下,当所采用的HF质量分数从10%增加到40%时,玻璃包覆层去除速度从0.005μm·s-1提高至0.076μm·s-1;在HF质量分数为40%的条件下,当反应温度从10℃升高到45℃时,玻璃包覆层去除速度从0.033μm·s-1提高到0.234μm·s-1;反应温度为20~25℃时,用质量分数40%的氢氟酸溶液去除厚度范围为7.5~9.0μm高硼硅玻璃包覆层的最佳时间为150s;硫氰酸钠及硫氰酸钠+乌洛托品作为缓蚀剂均可显著抑制氢氟酸溶液对芯丝的腐蚀,硫氰酸钠+乌洛托品还可有效减少金属吸氢,有利于防止芯丝力学性能的劣化
文档格式:PPS 文档大小:121KB 文档页数:20
EViews的对象(序列、组、方程等)可以用图、表、文本等形式表现 出来。这些视图是动态的,即当基础对象或活跃的样本变化时其展现形式 也会发生变化。 为防止视图随着对象的改变而改变,人们常将当前的视图保护起来。 在 EViews中这要靠 freezing(固化)来实现。固化一个视图将产生一个对象 (这个对象是该视图内容的“瞬象”)。原始视图的多样化产生了不同的 对象类型:固化一个图相当于建了一个图对象,固化一个表相当于建了一 个表对象,固化一个文本相当于建了一个文本对象
文档格式:PPT 文档大小:3.14MB 文档页数:133
第六章 绿色化学的应用 第一节: 绿色化学反应 第二节:绿色原料 • 一、从葡萄糖合成己二酸和邻苯二酚 • 二、生物质转化为化学品 • 三、CO2作发泡剂 • 四、 非光气法合成异氰酸酯 • 五、碳酸二甲酯作甲基化试剂 • 六、苄氯羰化合成苯乙酸 第四节 绿色溶剂 第五节 改变反应方式和反应条件 一、串联反应组合 二、异布洛芬的合成 三、碳酸二苯酯的固态聚合 四、辐射促进反应 (一)二硫代保护基的可见光光敏裂解 (二)Friedel-Crafts反应的光化学方法 第六节 绿色化学产品 • 一、更安全的腈的设计 • 二、海洋船舶防垢剂 • 三、低毒杀虫剂 • 四、聚天冬氨酸作阻垢剂 • 五、过氧化氢漂白活化剂 第七章 绿色化学发展趋势 第一节:不对称催化合成 第二节: 酶催化和生物降解 第三节:分子氧的活化和高选择性氧化反应 第四节: 清洁的能源 第五节:可再生资源的利用
首页上页2728293031323334下页末页
热门关键字
搜索一下,找到相关课件或文库资源 337 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有