点击切换搜索课件文库搜索结果(521)
文档格式:PPT 文档大小:458KB 文档页数:20
在解决线性方程组是否有解的判别条件之后, 我们知道在秩A=秩A=n(方程组未知量个数)时, 方程组有唯一解。在秩A=秩A
文档格式:PDF 文档大小:17.58MB 文档页数:29
所谓含参量的积分是指如下两大类积分: 1.() f(x, y)dy 若对于x∈[a,b]上述积分均是有意义的,即[a,B]可以到无穷,积分是收敛的 (若为广义积分的话)。也就是说,作为y的函数,f(x,y)在[a,B]上可积或广 义可积,则F(x)在[a,b]上就是关于x的函数,从积分本身的性质来讨论这类积
文档格式:DOC 文档大小:854.5KB 文档页数:19
定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质:
文档格式:PPT 文档大小:1.22MB 文档页数:8
定义: 设P是一个数域,元是一个文字,P是多项式环, 若矩阵A的元素是的多项式,即P2的元素,则 称A为九一矩阵,并把A写成A(4 注: ①∵PcPI孔],∴数域P上的矩阵一数字矩阵也 是一矩阵
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用小块矩阵表示如下:
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用小块矩阵表示如下:
文档格式:DOC 文档大小:143.5KB 文档页数:2
第四章4-3线性映射与线性变换(续) 4.3.4线性变换的定义与运算 定义线性空间到自身的线性映射称为线性变换,记Hom(V,V)为Endr(V)或End (V)。 例恒同变换 E:V→V, >a. 例投影(射影)设V=V1V2,Va∈V,a=a+a2(a1eV,a2∈V2),定义V到 V的投影P(a)=a1,V到V2的投影P2(a)=a2 定义End(V)中的运算(加法、数乘和乘法) 加法定义为(A+)(a)=A(a)+B(a)(Va∈V) 数乘定义为(kA)(a)=k(A(a)),其中k∈K; 乘法(复合)定义为(AB)(a)=A(B(a)
文档格式:PPT 文档大小:164KB 文档页数:2
设y=(x)≥0(x∈[a,b).在几何上,积分上限函数 表示以[a,x]为底的曲边梯形的面积.yy=f(x) 微分dA(x)=f(x)dx表示点x处以 dx为宽的小曲边梯形面积的近似值 A(x) f(x)dx △Af(x)dx,f(x)dx称为曲边梯形的面 积元素
文档格式:DOC 文档大小:102.5KB 文档页数:1
8-3模m的剩余类环 8.3.1模m的剩余类环的定义 定义8.7设m设一个正整数,定义 /(m)={a+(m)a∈} 将模m的剩余类a+(m)记作a,现定义Z/m)中的加法和乘法如下: 此两种运算满足8.1.1中除第9)条以外的其余八条性质(其中0称为Z/(m)的零元素,1 称为Z/(m)的单位元素),于是Z/(m)构成一个代数系统,称为Z模理想(m)的剩余类环 或乙模理想(m)的商环
首页上页3031323334353637下页末页
热门关键字
搜索一下,找到相关课件或文库资源 521 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有