点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:645.64KB 文档页数:4
以酚醛树脂为基体,加入B4C作为改性填料制备出高温粘结剂,并对Si3N4陶瓷进行粘接。在300~800℃温度范围内对Si3N4陶瓷粘接试样进行热处理,并测试了不同温度热处理后的室温剪切强度。结果表明,经过700~800℃热处理后,粘结剂表现出较为理想的粘接性能,剪切强度测试结果为Si3N4陶瓷基体破坏。利用扫描电镜研究了粘接试样的断面形貌及胶层结构特征。研究表明,在高温热处理过程中,B4C改性填料发生了复杂的物理、化学变化,通过B4C与树脂挥发分之间的改性反应,有效提高了酚醛树脂热解后的残炭值,进而改善了粘接胶层结构的高温稳定性;纤维状物质的形成与B2O3颗粒的细化,有助于提高粘接胶层的连接强度
文档格式:PDF 文档大小:836.56KB 文档页数:5
研究了不同退火温度对25Mn-3Si-3Al-TWIP钢组织和力学性能的影响.结果表明经1000℃退火后,此钢种可达到640MPa左右的抗拉强度和255MPa左右的屈服强度以及82%以上的延伸率,具有较好的综合力学性能.其室温组织为单相奥氏体基体的退火孪晶,通过TEM观察内部为大量的层错和孪晶共存结构.在随后的拉伸变形过程中产生大量形变孪晶,发生了TWIP效应——孪晶诱发塑性效应,使钢板具有优良的力学性能
文档格式:PDF 文档大小:1.69MB 文档页数:6
通过OM、SEM、TEM、EBSD等手段研究了F40级船板的组织特征以及组织结构对低温韧性的影响,并探讨了低温韧性的机理.结果表明:基体组织为针状铁素体+准多边形铁素体的复合组织,该复合组织具有较高的强度和优异的低温韧性;两种组织之间的界面以及针状铁素体条束之间的界面均为大角晶界,能够对裂纹的扩展起到有效的阻碍作用,增加裂纹扩展功,使得F40级船板具有良好的低温韧性,-80℃的冲击功都可以达到138J以上
文档格式:PDF 文档大小:612.58KB 文档页数:3
通过XRD,SEM和力学性能测试研究了β-Si3N4/α-Sialon复相陶瓷热压烧结的致密化、相组成、力学性能和微观结构.结果表明,β-Si3N4/α-Sialon复相陶瓷综合了β-Si3N4和α-Sia-lon的力学性能,可通过改变起始粉末的组成,可以调整相组成及裁剪材料的力学性能.由于加人具有大的长径比的物相β-Si3N4,提高了材料的强度和韧性
文档格式:PDF 文档大小:2.55MB 文档页数:7
采用搅拌摩擦焊(FSW)技术对1 mm厚6061-T6铝合金薄板进行了对接.研究了焊接工艺参数的范围,实验测试了焊接接头的强度、硬度和延伸率,利用金相显微镜、扫描电镜和透射电镜分析了接头的微观组织.结果表明:对于1 mm厚度6061-T6铝合金,FSW的最优工艺参数为旋转速度1 800 r·min-1,焊接速度1000 mm·min-1;在此参数下,接头的硬度值达到母材的80%左右,抗拉强度达到母材的103%,延伸率达到母材的54%;接头的力学性能与微观结构相符
文档格式:PDF 文档大小:577.84KB 文档页数:6
采用金相观察和极图分析方法进行了研究。研究表明,回复阶段,再结晶晶粒和结构均未出现;再结晶完成阶段.由于具有较高的冷轧变形储能,{111}取向的晶粒优先形核、长大;晶粒长大阶段,{111}取向的品粒吞并其他取向的品粒而继续长大并趋于均匀;通过增大退火均热温度和均热时间来延长品粒长大阶段是提高深冲性的有效措施
文档格式:PDF 文档大小:673.93KB 文档页数:4
阐述了笔者开发的H1400大型楔横轧机工作机座结构特点和设计要求.采用边界元和有限元耦合新算法,数值模拟了楔横轧机主要零部件在轧制过程中的变形,精确计算出轧机强度和整体刚度.H1400大型楔横轧机工作机座结构的结构及设计为满足大型轴类件生产和市场需求提供了设备保障
文档格式:PDF 文档大小:1.44MB 文档页数:5
采用ZrN作为添加剂热压烧结的Si3N4陶瓷材材料进行了透射电子显微镜观察和能谱EDS分析。观察结果表明:烧结的陶瓷中由于晶界残留的玻璃相数量较少,主要分布在三晶粒间界处,从而显著改善了Si3N4材料的高温性能;在这种材料中有许多弥散分布的ZrN相存在,可阻碍裂纹扩展,也起着提高Si3N4材料的强度和韧性的作用;用高分辨电子显微术观察到α’-Si3N4晶粒中存在不同的超结构
文档格式:PPT 文档大小:251.5KB 文档页数:17
21-1蜗杆机构的形成、类型及特点 21-2蜗杆传动的主要参数及几何尺寸计算 21-3蜗杆传动的失效形式、设计准则和材料选择 21-4蜗杆传动的强度和刚度计算 21-5蜗杆传动的效率、润滑和热平衡计算 21-6蜗杆和蜗轮的结构
文档格式:PPT 文档大小:36.5KB 文档页数:5
一束平行光照射材料时,一是部分光的能量被 吸收,其强度将被减弱;二是介质中光的传播 速度比真空中小,且随波长而变化产生色散现 象;三是光在传播时,遇到结构成分不均匀的 微小区域,有一部分能量偏离原来的传播方向 而向四面八方弥散开来,即发生散射现象,其 中光的吸收和散射都会导致原来传播方向上的 光强减弱。这些现象与光和物质的相互作用有 更多的联系
首页上页3132333435363738下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有