点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:418.5KB 文档页数:26
实验一 Mathemetica 系统使用入门 实验二 与极限、连续有关的问题 实验三 与微分学有关的问题
文档格式:PPT 文档大小:1.1MB 文档页数:47
换元积分法 直接利用基本积分表和分项积分法所能计算的 不定积分是非常有限的,为了求出更多的积分,需 要引进更多的方法和技巧本节和下节就来介绍求积 分的两大基本方法换元积分法和分部积分法。 在微分学中,复合函数的微分法是一种重要的 方法,不定积分作为微分法的逆运算,也有相应 的方法。利用中间变量的代换,得到复合函数的 积分法换元积分法。通常根据换元的先后, 把换元法分成第一类换元和第二类换元
文档格式:PPT 文档大小:981.5KB 文档页数:33
方向导数与梯度 实例:一块长方形的金属板,四个顶点的坐标是 1,1),(5,1),(1,3),(5,3).在坐标原点处有一个火 焰,它使金属板受热.假定板上任意一点处的温 度与该点到原点的距离成反比.在(3,2)处有一个 蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快到 达较凉快的地点? 问题的实质:应沿由热变冷变化最骤烈的方 向(即梯度方向)爬行
文档格式:PPT 文档大小:615KB 文档页数:23
微分法在几何上的应用 一、空间曲线的切线和法平面 定义设M是空间曲线L上的一个定点,M是 L上的一个动点,当M*沿曲线L趋于M 时,割线MM*的极限位置MT(如果极 限存在)称为曲线L在M处的切线 下面我们来导出空间曲线的切线方程
文档格式:PPT 文档大小:491KB 文档页数:26
隐函数的求导法则 一、一个方程的情形 1.F(x,y)=0 隐函数存在定理1设函数F(x,y)在点P(x,yo)的 某一邻域内具有连续的偏导数,且F(x,yo)=0, F(x,yo)≠0,则方程F(x,y)=0在点P(x,yo)的 某一邻域内恒能唯一确定一个单值连续且具有连续 导数的函数y=f(x),它满足条件yo=f(x),并
文档格式:PPT 文档大小:535.5KB 文档页数:29
偏导数 我们已经知道一元函数的导数是一个很重 要的概念,是研究函数的有力工具,它反映了该 点处函数随自变量变化的快慢程度。对于多元函 数同样需要讨论它的变化率问题。虽然多元函数 的自变量不止一个,但实际问题常常要求在其它 自变量不变的条件下,只考虑函数对其中一个自 变量的变化率,因此这种变化率依然是一元函数 的变化率问题,这就是偏导数概念,对此给出如 下定义
文档格式:PPT 文档大小:587KB 文档页数:57
忌数的概念 在许多实际问题中,需要从数量上研究变量的 变化速度。如物体的运动速度,电流强度,线密 度,比热,化学反应速度及生物繁殖率等,所有 这些在数学上都可归结为函数的变化率问题,即导数。 本章将通过对实际问题的分析,引出微分学中两个最重要的基本概念导数与微分,然后再建立求导数与微分的运算公式和法则,从而解决 有关变化率的计算问题
文档格式:DOC 文档大小:423KB 文档页数:8
微分学讨论题 1.设f(x,y)在点M(x0,y0)可微 af (xo, yo) af(xo, yo) =1,则∫(x,y)在点M(x0,y)的微分是( 2.已知(x+ay)x+yzy 为某个二元函数的全微分,则a=() x+ 3.设函数二=f(x,y)是由方程xz+x2+y2+2=√2确定的在点(0-)求止 (dx-√2dy) 4.设∫(x,y,z)=xy2+yz2+xx2,求 a2f(0,0,1)a2f(10.2)a2f(0,-10)03f(2,0,1) 2.2.0.0) 5.求下列函数在指定点的全微分
文档格式:DOC 文档大小:307.5KB 文档页数:9
第二章多元函数微分学 11-Exe-2习题讨论(II) 11Exe2-1讨论题 11-Exe-2-1参考解答 习题讨论 题目 若函数z=(x),方程Fx-a,y-=0确定,其a,b,c 为常数,F∈C2,证明: (1)由z=z(x,y)确定的曲面上任一点的切平面共点 (2)函数z=2(x,y)满足偏微分方程 a202=(a dxdy 今有三个二次曲面 2.设曲面S由方程ax+by+c=G(x2+y2+x2)确定,试证明: 曲面S上任一点的法线与某定直线相交
文档格式:DOC 文档大小:566.5KB 文档页数:12
第三节复合函数微分法 2-3复合函数微分法 23-1复合函数导数公式 23-2方向导数与梯度 第四讲复合函数微分法 课后作业 阅读:第二章第三节:pp.40-49 预习:第二章第四节:pp.50-58 作业:第二章习题3:pp.49-50:1,(2),(3,⑤5);2;4;6;7;9 2-3复合函数微分法 23-1复合函数导数公式 ()任何具体的初等多元函数的偏导数均可由一元函数求导公式解决,例 对函数z=sin-cos,求与一是简单的
首页上页3233343536373839下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有