点击切换搜索课件文库搜索结果(351)
文档格式:DOC 文档大小:1.73MB 文档页数:277
《高等数学》教学大纲 《工程数学》教学大纲 《大学物理及实验》教学大纲 《物理化学》教学大纲 《物理化学实验》教学大纲 《无机化学 1》教学大纲 《无机化学实验 1》教学大纲 《有机化学》教学大纲 《有机化学实验 1》教学大纲 《分析化学》教学大纲 《分析化学实验》教学大纲 《化工原理及实验》教学大纲 《化工设备机械基础》教学大纲 《AutoCAD 与工程制图》教学大纲 《化工热力学》教学大纲 《化学反应工程》教学大纲 《分离工程》教学大纲 《化工工艺学》教学大纲 《文献检索与科技论文写作》教学大纲 《专业英语》教学大纲 《精细化工工艺学》教学大纲 《煤化学与应用》教学大纲 《煤化工工艺学》教学大纲 《化工仪表及自动化》教学大纲 《电子电工技术》教学大纲(含实验) 《仪器分析及实验》教学大纲 《工业分析》教学大纲 《化工设计》教学大纲 《课程设计 2(化工原理课程设计)》教学大纲 《课程设计 3(AutoCAD 与工程制图课程设计)》教学大纲 《金工实习 2》教学大纲 《专业实习》教学大纲 《工业见习》教学大纲
文档格式:PDF 文档大小:644.57KB 文档页数:5
利用扫描电镜(SEM)、透射电镜(TEM)对炉卷轧机生产X100管线钢的显微组织特点进行了观察与分析,通过背散射电子衍射技术(EBSD)探讨了X100管线钢的有效晶粒尺寸与低温韧性的关系,并利用物理化学相分析的方法对X100管线钢的析出粒子尺寸分布和强化作用进行了定量分析.结果表明:X100管线钢的显微组织以粒状贝氏体为主,晶粒内部和晶界上弥散分布着大量细小的马氏体/奥氏体(M/A)岛;X100管线钢的有效晶粒尺寸较小,仅为2μm左右,细化有效晶粒尺寸和降低组织方向性有利于提高管线钢的低温韧性;X100管线钢中的析出粒子尺寸较小,平均尺寸为45.4nm,但由于其总体质量分数只有0.062%,经计算,其析出强化作用约为52MPa,析出强化对屈服强度贡献较小
文档格式:PDF 文档大小:2.08MB 文档页数:215
一、专业课程 1《力学》 2《热学》 3《普通物理实验 1》 4《电磁学》 5《光学》 6《普通物理实验 2》 7《数学物理方法》 8《原子物理学》 9《理论力学》 10《电动力学 1》 11《热力学与统计物理》 12《中学物理课程与教学论》 13《量子力学 1》 14《近代物理实验》 15《信息化教学》 16《中学物理教学法实验》 17《班级管理与教师心理》 18《教师职业技能及训练》 19《固体物理学》 20《计算物理学》 二、个性化发展课程 1《“互联网+”创新创业基础与实践》 2《现代物理简介》 3《软件设计与应用基础》 4《教育哲学》 5《中外教育简史》 6《中学生科技制作》 7《物理学史教育》 8《线上教学模式研究》 9《结构和物性》 10《电子线路基础》 11《半导体物理与器件》 12《专业英语》 13《量子力学 2》 14《电动力学 2》 15《LED 和太阳能电池的原理与应用》 16《凝聚态物理》 17《等离子体物理》 18《综合物理实验》 19《普通物理专题》 20《文献检索与论文写作》 三、实践教学环节 1《专业调研》 2《普通话》 3《汉字规范书写》 4《教育研习》 5《教具制作》 6《数字媒体设计与实践》 7《教育见习》 8《教育实习》 9《毕业论文(设计)》
文档格式:PPT 文档大小:1.97MB 文档页数:67
9.1 I/O接口扩展概述 9.1.1 扩展的I/O接口功能 9.1.2 I/O端口的编址 9.1.3 I/O数据的传送方式 9.1.4 I/O接口电路 9.2 AT89S52扩展I/O接口芯片82C55的设计 9.2.1 82C55芯片简介 9.2.2 工作方式选择控制字及端口PC置位/复位控制字 9.2.3 82C55的3种工作方式 9.2.4 单片机扩展82C55的接口设计 9.2.5 AT89S52扩展82C55的应用举例 9.3 利用74LSTTL电路扩展并行I/O口 9.4 用AT89S52单片机的串行口扩展并行口 9.4.1 用74LS165扩展并行输入口 9.4.2 用74LS164扩展并行输出口 9.5 用I/O口控制的声音报警接口 9.5.1 蜂鸣音报警接口 9.5.2 音乐报警接口
文档格式:PPT 文档大小:567KB 文档页数:66
第2章物理层 2.1物理层的基本概念 2.2数据通信的基础知识 2.2.1数据通信系统的模型 2.2.2有关信道的几个基本概念 2.2.3信道的最高码元传输速率 2.2.4信道的极限信息传输速率 2.3物理层下面的传输媒体 2.3.1导向传输媒体 2.3.2非导向传输媒体 2.4 模拟传输与数字传输 2.4.1 模拟传输系统 *2.4.2 调制解调器 *2.4.3 数字传输系统 *2.5 信道复用技术 2.5.1 频分复用、时分复用和统计时分复用 2.5.2 波分复用 2.5.3 码分复用 *2.6 同步光纤网SONET和同步数字系列SDH 2.7 物理层标准举例 2.7.1 EIA-232-E接口标准 2.7.2 RS-449接口标准
文档格式:PDF 文档大小:1.4MB 文档页数:7
利用Gleeble-3500热模拟试验机、扫描电镜、透射电镜、电子背散射衍射技术等手段研究V对700 MPa级高强度汽车大梁钢组织细化的影响.在冷却速度2~7℃·s-1时,显微组织为针状铁素体+粒状贝氏体组织.V添加提高粒状贝氏体体积分数,细化粒状贝氏体组织,并明显降低粒状贝氏体中M/A岛的尺寸.与无V钢相比,含V钢中大角度晶界比例提高18.2%,对提高钢的韧性有利.由于C含量过低,在实验钢中未观察到单独的VC析出,由此推测V主要固溶在基体中,以合金化方式促进钢的贝氏体相变,使组织得到有效细化
文档格式:PDF 文档大小:14.12MB 文档页数:10
采用激光熔覆与微弧氧化技术相结合在海洋钢表面制备了复合膜层.运用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)表征复合膜层的微观结构,采用极化曲线、电化学阻抗谱、腐蚀磨损实验和浸泡腐蚀实验等测试方法研究膜层在质量分数3.5%的NaCl水溶液中腐蚀行为,并与熔覆涂层和基体进行对比.结果表明:复合膜层主要分为内致密层和外疏松层,疏松层主要由γ-Al2O3组成,致密层主要由α-Al2O3组成,与基底层结合较好,复合膜层表面硬度最大能达到HV0.2 1423.3,比熔覆涂层高47.6%,其硬度较S355海洋钢有显著提升.基体在腐蚀和磨损交互作用中主要以腐蚀加速磨损为主,涂层在交互作用中主要以磨损加速腐蚀为主,在经过微弧氧化处理后,膜层的自腐蚀电位负移,钝态电流密度上升,抗磨蚀性能明显提高.熔覆涂层的浸泡腐蚀方式以点蚀为主,复合膜层腐蚀较轻微,阻抗模值最大能达到105.3 Ω·cm2,比熔覆层提高两个数量级,这表明复合处理可进一步提高涂层的耐腐蚀性
文档格式:PPT 文档大小:565KB 文档页数:66
2.1 物理层的基本概念 *2.2 数据通信的基础知识 2.2.1 数据通信系统的模型 2.2.2 有关信道的几个基本概念 2.2.3 信道的最高码元传输速率 2.2.4 信道的极限信息传输速率 2.3 物理层下面的传输媒体 2.3.1 导向传输媒体 2.3.2 非导向传输媒体 2.4 模拟传输与数字传输 2.4.1 模拟传输系统 *2.4.2 调制解调器 *2.4.3 数字传输系统 *2.5 信道复用技术 2.5.1 频分复用、时分复用和统计时分复用 2.5.2 波分复用 2.5.3 码分复用 *2.6 同步光纤网SONET和同步数字系列SDH 2.7 物理层标准举例 2.7.1 EIA-232-E接口标准 2.7.2 RS-449接口标准
文档格式:PDF 文档大小:7.91MB 文档页数:83
第一部分 ICETEK–VC5509-AE 评估板硬件使用指导 第一章 ICETEK–VC5509-AE 评估板技术指标. 第二章 ICETEK–VC5509-AE 原理图和实物图 . 第三章 接插件位置和拨档开关设置. 第四章 二次开发扩展总线(P1,P2,P3,P4)的定义与应用 第五章 TMS320VC5509 的存储空间和评估板的存储器映射 第六章 ICETEK–VC5509-AE评估板 I/O 寄存器的设计和使用. 第二部分 ICETEK-VC5509-AE 教学系统软件使用指导 实验设备安装 一.开发环境 . 二.ICETEK-DSP 教学实验箱的硬件连接 . 三.构造 DSP 开发软件环境 . 四.启动和设置 CCS 一.CCS 软件应用实验 实验 1 :Code Composer Studio 入门 . 实验 2 :编写一个以 C 语言为基础的 DSP 程序 . 实验 3 :编写一个以汇编(ASM)语言为基础的 DSP 程序 实验 4 :编写一个汇编和 C 混合的 DSP 程序 . 二.基于 DSP 芯片的实验 . 实验 :DSP 数据存取实验 三.基于 DSP 系统的实验 . 实验 :指示灯实验 . 实验 :拨码开关控制实验 . 第三部分 ICETEK-VC5509-AE 教学实验指导 . 实验 :单路,多路模数转换(AD) . 实验 :外中断 . 实验 :DSP 的定时器
文档格式:PDF 文档大小:921.36KB 文档页数:6
采用低温球磨技术制备了Mg-4%Ni-1%NiO储氢材料,主要研究低温球磨时间对材料形貌结构以及储氢性能的影响.采用扫描电子显微镜(SEM)和X射线衍射(XRD)分析材料的形貌和相组成,采用压力-组成-温度(P-C-T)设备研究材料的储氢性能.结果表明:分别经过2、4和7 h球磨后,材料的相组成没有发生明显改变,只有极少量的Mg2Ni合金相生成.随着球磨时间的延长,材料的平均粒度逐渐下降,作为催化剂的Ni、NiO相逐渐揉进基体内部.伴随着上述变化,材料的活化性能、吸氢性能逐渐提高,球磨到7 h后材料仅需活化1次即可达到最大吸放氢速率,初始吸氢温度降为60℃,在4.0 MPa初始氢压和200℃下吸氢量为6.4%(质量分数),60s即可完成饱和吸氢量的80%,10min内完成饱和吸氢量的90%;材料的放氢性能则在球磨4 h后已经基本保持不变,0.1MPa下初始放氢温度为310℃,在350℃、0.1MPa下材料可在500s内释放饱和储氢量的80%
首页上页2930313233343536下页末页
热门关键字
搜索一下,找到相关课件或文库资源 351 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有