点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:1.04MB 文档页数:32
反常积分的 Cauchy收敛原理 下面以∫f(x)dx为例来探讨反常积分敛散性的判别法。 由于反常积分∫f(x)dx收敛即为极限(x)dx存在,因此对 其收敛性的最本质的刻画就是极限论中的 Cauchy收敛原理,它可以 表述为如下形式:
文档格式:DOC 文档大小:441.5KB 文档页数:10
第七节重积分例讲 7-1二重积分 例一,计算二重积分=∫-x-y, 其中D={x,y)Mx()≤ 解:
文档格式:PPT 文档大小:780.5KB 文档页数:22
一.引例与概念 二.性质 三.对面积的曲面积分的计算 四.对面积的曲面积分的应用
文档格式:PPT 文档大小:575.5KB 文档页数:21
一.引例与概念 二.性质 三.对弧长的曲线积分的计算 四.对弧长的曲线积分的应用
文档格式:PPT 文档大小:1.04MB 文档页数:23
若直接用二重积分的定义去计算它的值,将是复 杂和困难,甚至是不可能的下面利用二重积分的几 何意义来寻求二重积分的计算方法
文档格式:PPT 文档大小:535.5KB 文档页数:15
含参变量常义积分的定义 设f(x,y)是定义在闭矩形[a,b]x[c,d]上的连续函数,对于任意固 定的y∈[c,d],f(x,y)是[a,b]上关于x的一元连续函数,因此它在[a,b 上的积分存在,且积分值∫f(xy)dx由y唯一确定。也就是说, I(y)= f(x, y)dx,[c,d] 确定了一个关于y的一元函数
文档格式:PPT 文档大小:1.37MB 文档页数:40
第二类曲线积分 设L 为空间中一条可求长的连续曲线,起点为 A,终点为B(这 时称L 为定向的)。一个质点在力 F(x, y,z) = P(x, y,z)i + Q(x, y,z) j + R(x, y,z)k 的作用下沿L 从 A移动到B , 我们要计算F(x, y,z)所作的 功
文档格式:PPT 文档大小:3.03MB 文档页数:49
第一类曲线积分 设一条具有质量的空间曲线L上任一点(x,y,z)处的线密度为 p(x,y,z)将L分成n个小曲线段L(i=1,2,…n),并在l上任取一点 (5,n,5),那么当每个L1的长度△都很小时,L的质量就近似地等于 i2li p(5,n,5)△,于是整条L的质量就近似地等于 ∑ (5,n,5)S1 当对L的分割越来越细时,这个近似值的极限就是L的质量
文档格式:PDF 文档大小:200.72KB 文档页数:32
反常积分的 Cauchy收敛原理 下面以∫厂f(x)dx为例来探讨反常积分敛散性的判别法。 由于反常积分。f(x)dx收敛即为极限mJf(x存在,因此对 其收敛性的最本质的刻画就是极限论中的 Cauchy收敛原理,它可以 表述为如下形式:
文档格式:PPT 文档大小:499.5KB 文档页数:14
由§6.1知定积分是一个复杂和式的极限但要想通过 求积分和的极限来得到定积分的值,却非常困难;下面 寻求一种计算定积分的非常简便的新方法—牛顿莱布 尼兹(Netwon-Laibniz-)公式计算法
首页上页3435363738394041下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有