In this lecture, we consider the problem of a body in which the mass of the body changes during the motion, that is, m is a function of t, i.e. m(t). Although there are many cases for which this particular model is applicable, one of obvious importance to us are rockets. We shall see that a significant fraction of the mass of a rocket is the fuel, which is expelled during flight at a high velocity and thus, provides the propulsive force for the rocket
In this lecture we will consider the equations that result from integrating Newtons second law, F=ma, in time. This will lead to the principle of linear impulse and momentum. This principle is very useful when solving problems in which we are interested in determining the global effect of a force acting on a particle over a time interval Linear momentum We consider the curvilinear motion of a particle of mass, m, under the influence of a force F. Assuming that