点击切换搜索课件文库搜索结果(990)
文档格式:PPT 文档大小:1.17MB 文档页数:77
5.1向量空间的定义和例子 5.2子空间 5.3向量的线性相关 5.4基和维数 5.5坐标 5.6向量空间的同构 5.7矩阵的秩齐次线性方程组的解空间
文档格式:PPT 文档大小:348KB 文档页数:26
若干个同维数的列向量(或同维数的行向量) 所组成的集合叫做向量组.
文档格式:DOC 文档大小:214.5KB 文档页数:2
命题如果n维空间V上的线性变换A的矩阵相似于对角矩阵,则A在任一不变子空 间M上(的限制)的矩阵相似于对角矩阵。 证明若V上的线性变换A的矩阵相似于对角矩阵,则V可以分解为特征子空间的直 和。记A的所有特征值为,2,2,则V=V4V,取M=nV, 断言M=M1M2⊕M,首先要证明
文档格式:DOC 文档大小:251.5KB 文档页数:3
5.1.3线性空间上的对称双线性函数、二次型函数的定义 定义若f为V上的双线性函数且f(a,B)=f(B,a),则称f为V上的对称双线性函数
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质:
文档格式:PPT 文档大小:1.96MB 文档页数:114
5.1 向量空间的定义 一、向量空间概念的引入 二、向量空间的定义 三、向量空间的例子 四、向量空间的基本性质 5.2 向量的线性相关性 5.3 基维数和坐标 一. 基 二. 维数 三. 关于基和维数的几个结论 四. 坐标 五. 过渡矩阵及向量在不同基下坐标的关系 六. 过渡矩阵的性质 5.4 子空间 5.5 向量空间的同构 第六章 线性方程组 6.1 消元解法 6.3 齐次线性方程组解的结构 6.4 一般 线性方程组解结构 6.5 秩与线性相关性 6.6 特征向量与矩阵的对角化 第七章 线性变换 7.1 线性变换的定义及性质 7.2 线性变换的运算 7.3 线性变换的矩阵 7.4 不变子空间 7.5 线性变换的本征值和本征向量 第八章 欧氏空间 8.1 欧氏空间的定义及基本性质 8.2 度量矩阵与正交基 8.3 正交变换与对称变换 8.4 子空间与正交性 8.5 对称矩阵的标准形
文档格式:DOC 文档大小:924KB 文档页数:25
一、集合 集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西 组成集合的东西称为这个集合的元素用 a∈M 表示a是集合M的元素,读为:a属于M用 a∈M 表示a不是集合M的元素,读为:a不属于M 所谓给出一个集合就是规定这个集合是由哪些元素组成的因此给出一个集 合的方式不外两种,一种是列举法:列举出它全部的元素,一种是描述法:给 出这个集合的元素所具有的特征性质
文档格式:PDF 文档大小:6.78MB 文档页数:190
§5.1 二次型及其矩阵表示 §5.2 标准型 §5.3 唯一性 §5.4 正定二次型 §6.1 集合、映射 §6.2 线性空间的定义与简单性质 §6.3 维数、基与坐标 §6.4 基变换与坐标变换 §6.5 线性子空间 §6.6 子空间的交与和 §6.7 子空间的直和 §6.8 线性空间的同构 §9.1 定义与基本性质 §9.2 标准正交基 §9.3 同构 §9.4 正交变换 §9.5 子空间 §9.6 实对称矩阵的标准型
文档格式:DOC 文档大小:63.5KB 文档页数:3
经过非退化线性替换,二次型的矩阵变成一个与之合同的矩阵.由第四章§4 定理 4,合同的矩阵有相同的秩,这就是说,经过非退化线性替换后,二次型矩 阵的秩是不变的.标准形的矩阵是对角矩阵,而对角矩阵的秩就等于它对角线上 不为零的平方项的个数
文档格式:PDF 文档大小:1.08MB 文档页数:115
第一章 多项式习题解答 第二章 行列式习题解答 第三章 线性方程组习题参考答案 第四章 矩阵练习题参考答案 第五章 二次型习题解答 第六章 线性空间习题解答 第九章 第九章 欧几里得空间习题解答
首页上页3637383940414243下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有