电子科技大学T-DSPs技术/培训中心管庆 dsp是 Digital Signal Processing(数字信号处理或 Digital Signal Processor(数 字信号处理器)的缩写。这一章中我们要讲的内容是,如何开始采用一个或多个数字信号处 理芯片对输入信号(数字信号)进行分析、处理。所以在你进行DSP开发之前,你应该明确
一、化学计量学介绍 a brief introduction of chemometrics 二、信息评价 information appraise 三、信号与噪声 signal and noise 四、信号的处理技术 technology of signal process 五、多元分析方法 polybasis analysis methods
1. Automatic Control System 1.1 Introduction 1.2 An example 1.3 Types of control system 2. Mathematical Foundation 2.1 The transfer function concept 2.2 The block diagram. 2.3 Signal flow graphs 2.4 Construction of signal flow graphs 2.5 General input-output gain transfer function 3. Time-Domain Analysis Of Control System 3.1 Introduction 3.2 Typical test signals for time response of control systems 3.3 First –Order Systems 3.4 Performance of a Second-Order System 3.5 Concept of Stability 4. The Root Locus Techniques 4.1 Introduction 4.2 Root Locus Concept 4.3 The Root Locus Construction Procedure for General System 4.4 The zero-angle (negative) root locus 5. Frequency-Domain Analysis of Control System 5.1 Frequency Response 5.2 Bode Diagrams 5.3 Bode Stability Criteria 5.4 The Nyquist Stability Criterion 6. Control system design 6.1 Introduction 6.2 Cascade Lead Compensation 6.3 Properties of the Cascade Lead Compensator 6.4 Parameter Design by the Root Locus Method
1. Automatic Control System 1.1 Introduction 1.2 An example 1.3 Types of control system 2. Mathematical Foundation 2.1 The transfer function concept 2.2 The block diagram. 2.3 Signal flow graphs 2.4 Construction of signal flow graphs 2.5 General input-output gain transfer 3. Time-Domain Analysis Of Control System 3.1 Introduction 3.2 Typical test signals for time response of control systems 3.3 First –Order Systems 3.4 Performance of a Second-Order System 3.5 Concept of Stability 4. The Root Locus Techniques 4.1 Introduction 4.2 Root Locus Concept 4.3 The Root Locus Construction Procedure for General System 4.4 The zero-angle (negative) root locus 5. Frequency-Domain Analysis of Control System 5.1 Frequency Response 5.2 Bode Diagrams 5.3 Bode Stability Criteria 5.4 The Nyquist Stability Criterion 6. Control system design 6.1 Introduction 6.2 Cascade Lead Compensation 6.3 Properties of the Cascade Lead Compensator 6.4 Parameter Design by the Root Locus Method
5.1 Basic concept of traffic signal control 5.2 Parameters in traffic signal control 5.3 Choice of Objective Function 5.4 Calculation of Cycle Length 5.5 Calculation of Split 5.6 Intelligent Traffic Control at Intersection
§9.1 Quantization Process and Error §9.2 A/D Conversion Noise Analysis §9.3 Signal-to-Quantization Noise Ratio §9.4 Limit Cycles in IIR Digital Filters