点击切换搜索课件文库搜索结果(8052)
文档格式:PDF 文档大小:506.74KB 文档页数:6
通过水模型实验研究了复吹转炉中顶吹、底吹及熔池产生的CO气流对熔池的搅拌作用。按正交实验设计法,由实验得出吹炼中期和后期影响熔池内传质的主要因素及合适的顶吹和底吹气量。在高速脱碳期,顶吹和底吹气流的搅拌作用与CO气流的相比可忽略不计;在脱碳后期,底吹气流对熔池的搅拌起主要作用。在吹炼后期,底吹气量为5Nm3/h时可达到最佳的搅拌效果。根据水模型实验结果,回归整理出混匀时间和容量传质系数的准数方程
文档格式:PDF 文档大小:674.42KB 文档页数:6
高炉喷吹煤粉和熔融还原铁浴粉煤气化等高速加热条件下,快速热分解是第一步。为研究1160-1750℃温度条件的这一过程,作者用等离子体加热的实验装置,加热速度可达4.3×103-2.4×104K/s。实验表明增加温度可明显改善烟煤的快速热分解过程,而旦效果比无烟煤明显得多;但气氛对快速热分解过程的影响不太明显。进而说明了铁浴气化粉煤和氧化介质可分开吹入,有利于控制喷嘴前端过热并减少金属蒸发后进入产品气体之中
文档格式:PDF 文档大小:516.36KB 文档页数:6
采用交流阻抗技术研究了钝化304不锈钢在pH8.4,H3BO3(0.2Mol/t-Na2B4O7(0.05mol/1)及pH9.2,Na2B4O7(0.05mol/l)的含氯介质中的点蚀行为;提出了点蚀的反应机理及发展阶段的界面等效电路模型,并认为在点蚀的发生和发展阶段都可能有复合物(MOHCl)及其进一步的吸附产物(MOHCl-Cln-)ad形成
文档格式:PDF 文档大小:1.26MB 文档页数:7
通过对高氧含量水雾化M2高速钢粉(W)的磁选(M)、真空松装烧结(V)及热挤压(E)的研究,提出了WMVB新工艺。用这种工艺不仅能以高氧含量的水雾化粉末生产性能与熔炼钢相当的冶金产品,而且经济可行,适用于我国当前的冶金工业
文档格式:PDF 文档大小:474.05KB 文档页数:6
通过一个扭转循环使CuZnAl合金产生塑性形变,用电阻法对塑性形变诱发的相变以及塑性形变的减小对诱发形成相的影响进行研究。结果表明:减小样品的塑性形变使已形成的应力马氏体消失,也使再取向马氏体部分消失。此外,在相变温区,塑性形变将使未完全长大的热弹性马氏体长大,而塑性形变的减小对长大后的热弹性马氏体没有影响
文档格式:PDF 文档大小:388.82KB 文档页数:4
以氧化铁皮为原料,采用有机粘结剂\CC\和以皂土为粘结剂,生产球团作对比试验。结果表明:有机粘结剂\CC\和皂土均可降低生球长大速度,提高生球、干球落下和抗压强度,但生产同样质量的球团矿,\CC\的用量只有皂土用量的1/10。且其直接还原铁(DIR)产品质量优于皂土球团
文档格式:PDF 文档大小:502.77KB 文档页数:6
用扫描电镜和电子探针研究了低碳锰钢中的周期性带状组织。结果表明,在全部研究用钢中,钢锭经热轧后均出现这种组织,其严重程度随钢的成分而异,并随坯到带加工顺序而增加。带状组织与锰的显微偏析等因素有关。适当的调整碳锰比及形成横跨铁素体带的转变产物可降低带状组织的严重程度
文档格式:PDF 文档大小:1.08MB 文档页数:5
采用合适的冶炼及形变热处理工艺获得了具有x-Ti+Ti2Co金属间化合物双相超细组织的Ti-12Co-5Al合金板材。该合金呈现出优异的高速低温超塑性,在700℃的较低温度和3×10-2s-1的高应变速率条件下获得了延伸率为1550%的超塑性。微观组织研究表明,超塑变形促进了Ti2Co粒子的长大和形状变化,且在延伸率达500%时试样中仍无孔洞产生
文档格式:PDF 文档大小:656.4KB 文档页数:7
对液排渣粉煤燃烧器内气流运动规律和混合过程进行了冷态模拟研究,分析了结构参数和动力参数对流动的影响。试验表明:燃烧室轴向速度可分成6个不同的的区域,存在4个回流区;简单环形挡渣板也能产生环形回流区,在旋风燃烧室设计中可取代锥形缩口挡渣板。最佳参数为:1次风旋流数S1为1.78~2.0;1次风口和2次风口距离L12=(0.75~1.15)D;一次风量为15%~20%
文档格式:PDF 文档大小:407.19KB 文档页数:5
本文在以往的蠕变变形空洞形核模型的基础文上提出了一个新的空洞形核模型。该模型不但考虑了位错塞和所产生的应力集中的作用,同时也考虑了空位聚集的作用。从本文推导出的临界空洞半径表达式即可得出Raj等人提出的临界半径关系式,又可得出Smith等人提出的空洞形核临界应力关系式,从而说明本文提出的空洞形核模型比以往的模型具有更广泛的适用范围
首页上页466467468469470471472473下页末页
热门关键字
搜索一下,找到相关课件或文库资源 8052 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有