点击切换搜索课件文库搜索结果(987)
文档格式:PDF 文档大小:488.08KB 文档页数:4
研究了把计算机单目视觉系统应用于连铸结晶器熔钢液面高度检测的可行性,为此配置了系统硬件,开发出相应的应用软件,进行了冷态模拟实验.结果证明此方法是可行的.在此基础上提出了一种响应时间短、测量精度高的连铸结晶器熔钢液位测量方法
文档格式:PDF 文档大小:593.97KB 文档页数:5
利用电化学实验方法和纳米力学探针技术,通过测量载荷-位移关系曲线,研究了氢对不锈钢钝化膜纳米力学性能的影响。结果表明:随氢含量的增加,不锈钢钝化膜的临界破裂载荷降低,位移偏移量减小,氢导致钝化膜的径向抗拉强度(应力)和弹性模量降低,钝化膜随氢含量的增加而逐渐软化
文档格式:PDF 文档大小:615.26KB 文档页数:7
本文以电化学方法研制Fe—P非晶合金的电沉积镀层。研究了各种电沉积条件对合金中磷含量的影响。测定了非晶合金的腐蚀性和极化曲线。实验结果指出,在开始阶段合金是活化腐蚀,合金中的磷加快了腐蚀过程,最后磷在表面的富集,使合金进入钝化状态。 对非晶合金电沉积镀层的晶化温度和硬度进行了测定
文档格式:PDF 文档大小:358.57KB 文档页数:5
针对不完备信息表预处理问题中的不完备数据的填补问题、冗余属性的约简问题和连续属性的离散化问题进行了研究.应用粗糙集理论,由相容信息表中条件属性与决策属性间的一致性对应关系,定义了划分区间的加法运算,解决了不完备数据填补问题;根据类别概念,定义了差别向量,利用差别向量加法运算删除了冗余属性;根据条件属性与决策属性之间的依赖关系及相对信息熵概念,实现了连续属性的离散化.数值示例和实验结果显示此方法是有效可行的
文档格式:PDF 文档大小:588.8KB 文档页数:3
以惰性气体雾化粉末为原料,采用超固相线液相烧结方法制备了Inconel 718粉末高温合金,研究了粉末合金的烧结温度和热处理制度对合金组织和力学性能的影响.实验结果表明:在1240℃真空烧结120min可以制备出相对密度为98.5%的粉末合金,后续的热等静压处理可以将其相对密度提高到99.7%;经热处理后,合金的抗拉强度和延伸率分别为1280MPa和9%;析出相为球形γ'相、针状γ″相以及粗大的碳化物,平均晶粒大小在50μm以下
文档格式:PDF 文档大小:1.21MB 文档页数:5
通过急冷凝固及加铬合金化的方法,改善了金属间化合物Fe3Al的室温塑性。实验结果表明:急冷凝固降低了合金有序度,细化了晶粒,而合金元素铬的添加,使铁铝合金的室温延伸率由2%提高到5.6%
文档格式:PPT 文档大小:2.78MB 文档页数:66
8.1 概论 8.2.1 常量组分的沉淀分离 8.2.2 微量组分的共沉淀分离与富集 8.2 沉淀分离法 8.3 溶剂萃取分离法 8.3.1 萃取分离的基本原理 8.3.2 萃取分离的类型及条件 8.3.3 萃取分离的实验方法 8.3.4 萃取分离在分析化学中的应用 8.3.5 萃取分离技术的发展(自主研究学习) 8.4 离子交换分离法 8.4.1 离子交换树脂 8.4.2 离子交换亲合力 8.4.3 离子交换分离操作方法 8.4.4 离子交换分离法的应用 8.5 色谱分离法 8.5.1 柱色谱 8.5.2 纸色谱 8.5.3 薄层色谱
文档格式:PDF 文档大小:542.8KB 文档页数:6
研究了扩展晶界面积密度的体视学测估问题,导出了利用实际晶界面积密度和第二相体积密度计算扩展晶界面积密度导致的系统误差的计算公式,并提出直接实验测估的3种方法,经实例演示和验证,这些方法可消除上述系统误差,保证界面交互作用的体现学定量描述的准确性
文档格式:PDF 文档大小:395.54KB 文档页数:5
针对轧辊表面电火花毛化过程中放电中心温度的变化、凹坑形状与电参数的关系等问题进行了研究.通过分析放电通道形成过程和热流密度分布函数,采用解析法建立了单个脉冲放电通道的热传导模型,并运用积分变换法和有限差分相结合的方法进行了温度场求解.讨论了轧辊表面在不同峰值电流下放电区域中心位置的瞬态温度变化,确立了峰值电流和脉冲宽度与熔化凹坑形状的关系.结果表明,理论计算值与实验结果相吻合,所建模型与采用的方法正确,可用于轧辊表面形貌形成过程的仿真
文档格式:PDF 文档大小:583.8KB 文档页数:6
采用热处理实验方法,同时结合热模拟压缩和热模拟拉伸试验,研究了热处理对奥氏体不锈钢OOCr24Ni13铸坯高温热塑性的影响.实验结果表明:热处理能够明显改变实验钢铸坯中δ铁素体的形貌;经1200℃保温3h空冷后,原始铸坯中存在的大面积连续网状δ铁素体完全转变为弥散分布的细小颗粒状组织.具有颗粒状δ铁素体的热处理试样与热处理前相比,不同温度压缩时的变形抗力略有增加,但并没有急剧恶化;热模拟抗拉强度基本保持不变;相同温度下的断面收缩率(Z)显著提高,其中Z≥60%的温度区间由1150—1280℃扩展为1050~1300℃,高塑性(Z≥80%)温度范围在150℃左右(1150~1300℃).
首页上页4445464748495051下页末页
热门关键字
搜索一下,找到相关课件或文库资源 987 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有