点击切换搜索课件文库搜索结果(4906)
文档格式:PPT 文档大小:560.5KB 文档页数:23
在前面所讨论的定积分事实上是有条件 的:一是积分区间是有限区间,二是被积函数 在积分区间上有界。但实际问题常常要突破这 两个前提,因此需要对定积分作如下两种推广 :无穷区间上的积分无穷限积分,无界函 数在有限区间上的积分无界函数积分或瑕 积分,统称为广义积分或旁义积分,以前讨论 过的定积分称为常义积分
文档格式:PPT 文档大小:816.5KB 文档页数:31
在上册中,我们讨论的是一元函数微积分 ,但实际问题中常会遇到依赖于两个以上自变量 的函数多元函数,也提出了多元微积分问题。 多元微积分的概念、理论、方法是一元微 积分中相应概念、理论、方法的推广和发展, 它们既有相似之处(概念及处理问题的思想方 法)又有许多本质的不同,要善于进行比较, 既要认识到它们的共同点和相互联系,更要注 意它们的区别,研究新情况和新问题,深刻理 解,融会贯通
文档格式:PPT 文档大小:493.5KB 文档页数:23
一、全微分的定义 由一元函数微分学中增量与微分的关系得
文档格式:PPT 文档大小:491KB 文档页数:26
隐函数的求导法则 一、一个方程的情形
文档格式:PPT 文档大小:615KB 文档页数:23
微分法在几何上的应用 一、空间曲线的切线和法平面 定义设M是空间曲线L上的一个定点,M是 L上的一个动点,当M*沿曲线L趋于M 时,割线MM*的极限位置MT(如果极 限存在)称为曲线L在M处的切线 下面我们来导出空间曲线的切线方程
文档格式:PPT 文档大小:631KB 文档页数:32
一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:PPT 文档大小:451KB 文档页数:27
前一章我们已经把积分概念从积分范围的角度 从数轴上的一个区间推广到平面或空间内的一个 区域,在应用领域,有时常常会遇到计算密度不 均匀的曲线的质量、变力对质点所作的功、通过 某曲面的流体的流量等,为解决这些问题,需要 对积分概念作进一步的推广,引进曲线积分和曲 面积分的概念,给出计算方法,这就是本章的中 心内容,此外还要介绍 Green公式、 Gauss公 式和 Stokes公式,这些公式揭示了存在于各 种积分之间的某种联系
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:1.11MB 文档页数:36
对坐标的曲面积分 一、基本概念 观察以下曲面的侧(假设曲面是光滑的) 曲面分上侧和下侧曲面分内侧和外侧
文档格式:PPT 文档大小:374.5KB 文档页数:25
一、主要内容 曲线积分 对弧长的曲线积分 对坐标的曲线积分
首页上页478479480481482483484485下页末页
热门关键字
搜索一下,找到相关课件或文库资源 4906 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有