点击切换搜索课件文库搜索结果(5169)
文档格式:DOC 文档大小:214KB 文档页数:4
由前一节的讨论,已经得到下面的两点性质: 1.辛空间(V,f)中一定能找到一组基E,E2,n-2n满足 f(n)=1,1≤i≤n, f()=0,-n≤i,jn,i+j≠0
文档格式:DOC 文档大小:73KB 文档页数:1
定义10设v1,V2是欧氏空间V中两个子空间如果对于任意的a∈V1,BEV2 恒有 (a,B)=0 则称V,2为正交的,记为V1⊥V2一个向量,如果对于任意的B∈V,恒有 (a,B)=0
文档格式:DOC 文档大小:160.5KB 文档页数:5
由第五章得到,任意一个对称矩阵都合同于一个对角矩阵,换句话说,都有 一个可逆矩阵C使CAC成对角形现在利用欧氏空间的理论,第五章中关于实对 称矩阵的结果可以加强这一节的主要结果是: 对于任意一个n级实对称矩阵A,都存在一个n级正交矩阵T
文档格式:DOC 文档大小:95KB 文档页数:4
一、标准正交基 定义5欧氏空间V的一组非零的向量如果它们两两正交,就称为一个正交 向量组 按定义,由单个非零向量所成的向量组也是正交向量组 正交向量组是线性无关的这个结果说明,n维欧氏空间中,两两正交的非 零向量不能超过n个
文档格式:DOC 文档大小:146.5KB 文档页数:3
对于给定的n维线性空间V,A∈L(V),如何才能选到V的一个基使关于 这个基的矩阵具有尽可能简单的形式由于一个线性变换关于不同基的矩阵是相 似的因而问题也可以这样提出在一切彼此相似的n阶矩阵中如何选出一个形 式尽可能简单的矩阵这一节介绍不变子空间的概念,来说明线性变换的矩阵的 化简与线性变换的内在联系
文档格式:DOC 文档大小:108KB 文档页数:3
现在来证明,-矩阵的标准形是唯一的 定义5设λ-矩阵A(4)的秩为r,对于正整数k,1≤k≤r,A(4)中必有非 零的k级子式.A(4)中全部k级子式的首项系数为1的最大公因式D(4)称为 A(A)的k级行列式因子 由定义可知,对于秩为r的λ-矩阵,行列式因子一共有r个行列式因子的 意义就在于,它在初等变换下是不变的
文档格式:DOC 文档大小:54.5KB 文档页数:3
由前面的讨论可知,并不是对于每一个线性变换都有一组基,使它在这组基 下的矩阵成为对角形.下面先介绍一下,在适当选择的基下,一般的一个线性变 换能化简成什么形状
文档格式:DOC 文档大小:111KB 文档页数:2
设E1,E2,…,E是线性空间V的一组基,在这组基下,V中每个向量都有确定 的坐标,而向量的坐标可以看成P元素,因此向量与它的坐标之间的对应实质 上就是V到P的一个映射.显然这个映射是单射与满射,换句话说,坐标给出了 线性空间V与P的一个双射.这个对应的重要性表现在它与运算的关系上
文档格式:DOC 文档大小:182.5KB 文档页数:4
一、线性变换的乘法 设A,B是线性空间V的两个线性变换,定义它们的乘积为 (AB)(a)=A,B(a))(a∈V) 则线性变换的乘积也是线性变换 线性变换的乘法适合结合律,即 (AB)C=(BC)
文档格式:DOC 文档大小:109KB 文档页数:3
定理 5 如果 V1 ,V2 是线性空间 V 的两个子空间,那么它们的交 V1 V2 也是 V 的子空间
首页上页496497498499500501502503下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5169 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有