点击切换搜索课件文库搜索结果(610)
文档格式:PPT 文档大小:1.29MB 文档页数:59
时间序列数据或截面数据都是一维数据。例如时间序列数据是变量按时间得到的数据;截面数据是变量在截面空间上的数据。面板数据是同时在时间和截面上取得的二维数据。所以,面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)
文档格式:PPT 文档大小:449.5KB 文档页数:57
3.1 多元线性回归模型 3.2 回归参数的估计 3.3 参数估计量的性质 3.4 回归方程的显著性检验 3.5 中心化和标准化 3.6 相关阵与偏相关系数 3.7 本章小结与评注
文档格式:PDF 文档大小:121KB 文档页数:12
Ch. 19 Models of Nonstationary Time Series In time series analysis we do not confine ourselves to the analysis of stationary time series. In fact, most of the time series we encounter are nonstationary. How to deal with the nonstationary data and use what we have learned from stationary model are the main subjects of this chapter 1 Integrated Process
文档格式:PDF 文档大小:193.86KB 文档页数:26
Ch. 18 Vector Time series 1 Introduction In dealing with economic variables often the value of one variables is not only related to its predecessors in time but, in addition, it depends on past values of other variables. This naturally extends the concept of univariate stochastic process to vector time series analysis. This chapter describes the dynamic in
文档格式:PPT 文档大小:505KB 文档页数:67
• 一、向量自回归模型定义 • 二、VAR的稳定性 • 三、VAR模型滞后期k的选择 • 四、VAR模型的脉冲响应函数和方差分解 • 五、格兰杰非因果性检验 • 六、VAR与协整 • 七、实例
文档格式:PPT 文档大小:121.5KB 文档页数:42
• 一、多重共线性的概念 • 二、实际经济问题中的多重共线性 • 三、多重共线性的后果 • 四、多重共线性的检验 • 五、克服多重共线性的方法 • 六、案例 • *七、分部回归与多重共线性
文档格式:PPT 文档大小:581KB 文档页数:66
一、多重共线性 对于模型 在求最小二乘估计时,要求XX的逆存在。当XX的逆不 存在时,即,x之间存在高相关的情况,我们称之为多重 共线性
文档格式:PDF 文档大小:165.97KB 文档页数:21
Ch. 17 Maximum likelihood estimation e identica ation process having led to a tentative formulation for the model, we then need to obtain efficient estimates of the parameters. After the parameters have been estimated, the fitted model will be subjected to diagnostic checks This chapter contains a general account of likelihood method for estimation of the parameters in the stochastic model
文档格式:PDF 文档大小:127.49KB 文档页数:14
Ch. 15 Forecasting Having considered in Chapter 14 some of the properties of ARMA models, we now show how they may be used to forecast future values of an observed time series. For the present we proceed as if the model were known ecactly Forecasting is an important concept for the studies of time series analysis. In the scope of regression model we usually
文档格式:PDF 文档大小:177.79KB 文档页数:28
Ch. 14 Stationary ARMA Process a general linear stochastic model is described that suppose a time series to be generated by a linear aggregation of random shock. For practical representation it is desirable to employ models that use parameters parsimoniously. Parsimony may often be achieved by representation of the linear process in terms of a small number of autoregressive and moving
首页上页4950515253545556下页末页
热门关键字
搜索一下,找到相关课件或文库资源 610 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有