网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(772)
《高等数学考试题》试卷号:B020017(答案)
文档格式:DOC 文档大小:232.5KB 文档页数:8
一、解答下列各题 (本大题共3小题,总计13分) 1、(本小题4分) 证明:f(x)= arctanx在[0,1]上连续,在(0,1)可导 即f(x)在[0,1]上满足拉格朗日中值定理的条件 4分 又f(x)=、1
高等院校非数学类本科数学课程:《大学数学》课程PPT教学课件(三)多元微积分学课件 第一章 多元函数微分学(1.4)第四节 全微分方向导数梯度
文档格式:PPT 文档大小:1.12MB 文档页数:54
一、全微分 我们以二元函数为主,进行讲解,所得结 论可容易地推广至三元和三元以上的函数中
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第十章 曲线积分(10.1)Gauss 公式(1/2)
文档格式:PPT 文档大小:631KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了 Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时 Gauss公式也是计算曲面积分的一 有效方法
《高等数学》课程教学资源:第六章 定积分应用
文档格式:PPT 文档大小:161.5KB 文档页数:9
上一章,已经系统地介绍了定积分的基本 理论和计算方法。在这一章中,将利用这些知 识来分析解决一些实际问题。定积分的应用很 广泛,在自然科学和生产实践中有许多实际问 题最后都归结为定积分问题。本章不仅对一些 几何物理量导出计算公式,更重要的是介绍运 用“微元法”将所求的量归结为计算某个定积 分的分析方法
北京大学:《高等代数》课程教学资源(讲义)第七章 线性变换的Jordan标准型 7.2 一般线性变换的 Jordan标准型(1/2)
文档格式:DOC 文档大小:51.5KB 文档页数:1
定理设A是数域K上的n阶方阵.如果A的特征值全属于K,则A在K上相似于 Jordan形矩阵,并且在不计 Jordan块顺序的意义下 Jordan形是唯一的. 证明:此定理就是上一定理用矩阵的语言叙述出来 Jordan标准形的计算方法:
《高等数学》课程教学资源:第六章(6.1)定积分应用
文档格式:PPT 文档大小:161.5KB 文档页数:9
上一章,已经系统地介绍了定积分的基本 理论和计算方法。在这一章中,将利用这些知 识来分析解决一些实际问题。定积分的应用很 广泛,在自然科学和生产实践中有许多实际问 题最后都归结为定积分问题。本章不仅对一些 几何物理量导出计算公式,更重要的是介绍运 用“微元法”将所求的量归结为计算某个定积 分的分析方法
北京大学:《高等代数——数学分析》课程教学资源(讲义)第五章 参变量积分
文档格式:PDF 文档大小:17.58MB 文档页数:29
所谓含参量的积分是指如下两大类积分: 1.() f(x, y)dy 若对于x∈[a,b]上述积分均是有意义的,即[a,B]可以到无穷,积分是收敛的 (若为广义积分的话)。也就是说,作为y的函数,f(x,y)在[a,B]上可积或广 义可积,则F(x)在[a,b]上就是关于x的函数,从积分本身的性质来讨论这类积
《高等数学》课程教学资源:第三章 Taylor公式(3.3)函数的极值及其求法
文档格式:PPT 文档大小:447KB 文档页数:23
由单调性的判定法则,结合函数的图形可知, 曲线在升、降转折点处形成“峰”、“谷”,函 数在这些点处的函数值大于或小于两侧附近各点 处的函数值。函数的这种性态以及这种点,无论 在理论上还是在实际应用上都具有重要的意义, 值得我们作一般性的讨论
《高等数学》课程教学资源:第三章(3.3)函数的极值及其求法
文档格式:PPT 文档大小:447KB 文档页数:23
由单调性的判定法则,结合函数的图形可知, 曲线在升、降转折点处形成“峰”、“谷”,函 数在这些点处的函数值大于或小于两侧附近各点 处的函数值。函数的这种性态以及这种点,无论 在理论上还是在实际应用上都具有重要的意义, 值得我们作一般性的讨论
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第十章 曲线积分(10.5)Stokes 公式
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式。 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
首页
上页
49
50
51
52
53
54
55
56
下页
末页
热门关键字
两端
转型与经济学
医药
机学
高层建筑设计
对立
CHEMISTRY
(2) (3)
排放
纳米科学与纳米技术
内部控制
框架
课程表
接收
建筑
记者
绩效薪酬管理
淮海学院
湖北职业技术学院
好!
果树
规划
工厂
复兴
仿真
短路
钓鱼
创新心理学
传统
传媒经济学
城市
材料工程
变异
北京现代职业技术学院
巴彬斯基反射
Web技术应用基础
spss
P++
CPU
Java程序设计
搜索一下,找到相关课件或文库资源
772
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有