点击切换搜索课件文库搜索结果(5348)
文档格式:DOC 文档大小:285KB 文档页数:5
第二章3线性方程组的理论课题 3.1.1齐次线性方程组的基础解系 对于齐次线性方程组 ax1+a12x2+…+anxn=0 Ja12x1+a22x2++ =0, ……… amx+am2x2+…+=0 令 (a1)(a1 a22 a1= a2,a2= ,…,an= am2/ amn 则上述方程组即为
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包 含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用 小块矩阵表示如下: A1A12… A=4424
文档格式:DOC 文档大小:287.5KB 文档页数:4
第三章3-1,3-2n阶方阵的行列式 3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3) (b1,b2,b3)和(1,C2,C3),则由向量a,B,y张成的平行六面体的有向体积为 (ab2-a2b1)c1+(a3b1-ab3)c2+(ab2-a2b1)C3
文档格式:DOC 文档大小:194.5KB 文档页数:7
第二章2-5n阶方阵 2.5.1n阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、 下三角矩阵 定义(数域K上的n阶方阵)数域K上的nn矩阵成为K上的n阶方阵,K上全 体n阶方阵所成的集合记作Mn(K)。 定义(n阶对角矩阵、数量矩阵、单位矩阵)数域K上形如 ( 0 0 n /nxn 的方阵被称为n阶对角矩阵,与其他矩阵相乘,有 (a1a12and
文档格式:DOC 文档大小:232KB 文档页数:3
第二章4矩阵的运算 2.4.1矩阵运算的定义 定义(矩阵的加法和数乘)给定两个mn矩阵 [a1a12an [b1b12…b A= a21 a22 a2n B= b21b22…b2 : : Lamt am22a bmbm2b A和B加法定义为
文档格式:DOC 文档大小:87KB 文档页数:2
第二章2矩阵的秩 2.1.1矩阵的行秩与列秩、矩阵的转置 定义2.1矩阵的行秩与列秩。 一个矩阵A的行向量组的秩成为A的行秩它的列向量组的秩称为A的列秩。 命题2.1矩阵的行(列)初等变换不改变行(列)秩 证明只需证明行变换不该行秩。容易证明经过任意一种初等行变换,得到的行向 量组与原来的向量组线性等价,所以命题成立。证毕。 定义2.2矩阵的转置 把矩阵A的行与列互换之后,得到的矩阵A称为矩阵A的转置矩阵 命题2.2矩阵的行(列)初等变换不改变列(行)秩
文档格式:PDF 文档大小:885.72KB 文档页数:14
隧道越修越长断面越修越大、地下空间利用形式越来越复杂,传统的建设理念与交通出行的安全、舒适性之间矛盾凸显,隧道预制化应用及洞内的噪声、照明、尾气等要求需进行系统性研究,以满足节能、环保的绿色建造理念
文档格式:DOC 文档大小:49.5KB 文档页数:11
罐头食品经密封、加热杀菌等处理后,其中的微生物几乎均被灭活,而外界微生 物又无法进入罐内,同时容器内的大部分空气已被抽除,食品中多种营养成分不致被 氧化,从而这种食品可保存较长的时间而不变质
文档格式:DOC 文档大小:973KB 文档页数:22
第三章n维向量 要求: 1、理解向量的概念,理解向量的线性组合、线性表示的概念; 2、理解向量组线性相关与线性无关的概念,了解线性相关性的一些重要结论 3、理解向量组的极大线性无关组和秩的概念;理解矩阵秩的概念。 4、了解向量组等价的概念,了解向量组的秩和矩阵秩的关系以及有关秩的一些性质。 5、掌握用初等变换求向量组的极大线性相关组、秩和矩阵秩的方法。 6、了解向量空间等的概念
文档格式:DOC 文档大小:16KB 文档页数:1
一、选择与填空 1.设计键联接时键的截面尺寸通常根据 按标准选择。 (1)所传递转矩的大小(2)所传递功率的大小(3)轮毂的长度(4)轴的直径 2.普通平键联接的主要失效形式是 ,导向平键联接的主要失效形式是 3.在载荷性质相同时,导向平键联接的许用压力取得比普通平键联接的许用挤压应力小, 这是为了 (1)减轻磨损(2)减轻轮毂滑移时的阻力(3)补偿键磨损后强度的减弱(4)增加导
首页上页525526527528529530531532下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5348 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有