点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:623.61KB 文档页数:6
采用有限元软件DEFORM-3D对GH4169合金的楔横轧成形进行了热力耦合数值模拟,得到了GH4169合金轧件的金属流动情况、温度场的分布规律以及轧件与轧辊间的轧制力和力矩,并与45#钢进行了对比分析.结果表明:在楔横轧成形中,GH4169合金轧件的轴向金属流动规律不同于45#钢,其外层金属的轴向流动大幅度滞后于心部;各力能参数都要大于45#钢,且最高为45#钢的2.15倍;变形温度始终高于45#钢,最高温升比45#钢多6.21%
文档格式:PDF 文档大小:854.26KB 文档页数:5
以圆坯连铸结晶器温度实测数据为基础,研究应用神经元网络求解结晶器传热反问题的可行性,并尝试将神经元网络与数值计算结合用于结晶器传热计算,探索针对实测数据的结晶器传热在线计算方法.结果表明,数值计算结果与实测温度符合较好,可真实反映实际生产中圆坯结晶器传热的非均匀特性
文档格式:DOC 文档大小:347.5KB 文档页数:13
本章介绍求解微分方程数值解的基本思想和方 法。 许多科学和技术问题的数学模型,常常归结为一 个含有自变量、未知函数和它的一阶导数和高阶 导数的方程,称为常微分方程。它是描述运动、 变化规律的重要数学方法之一
文档格式:PDF 文档大小:3.36MB 文档页数:6
为解决W型燃气辐射管换热器排烟温度高的问题,设计了三种改进换热器性能的结构,采用ANSYS FLUENT软件进行数值模拟,得到了不同结构换热器的性能参数,如烟气出口温度、空气预热温度、压力损失、各换热面换热量和有无折流板的热阻变化.结果表明,中心空气管由一根φ79 mm粗管改为六根φ33 mm细管后换热量增加了57.6%,增设烟气双行程后换热量提高20.7%.增设密封折流板和多孔折流板后换热量分别增加了5.7%和5.3%,空气和烟气之间的热阻都降低了20%左右.多孔折流板的烟气压力损失比密封折流板低47.4%
文档格式:PDF 文档大小:562.42KB 文档页数:4
确定了斜轧磷铜球轧辊孔型曲面方程,通过VC++编程得到轧辊孔型曲面上的特征曲线.利用Pro/E的曲面建模功能建立了轧辊的三维实体几何模型.利用DEFORM-3D软件,采用三维刚-塑性有限元法对斜轧磷铜球进行了数值模拟,获得轧件变形区的应力-应变场分布规律
文档格式:PDF 文档大小:849.91KB 文档页数:63
一、为什么学习泊松方程 二、热流,势能流,静电学 三、提升许多求解偏微分方程问题的能力 四、基本数值技术 五、基函数(FEM)和有限差分法 六、积分方程法
文档格式:PDF 文档大小:380.94KB 文档页数:3
指出了现象相似的数学物理本质是它们在同一个量纲为1的单元坐标体系中有相同的量纲为1的模型:模型的结构相同且各特征数数值——对应相等.以冶金工程中常见的问题——一维非稳态传导传热问题为例进行了说明与讨论.指明在量纲为1的单元坐标体系中不同现象的规律性之区别仅在于变量之间的关系不同,并不依赖于描述实际现象的方程.只要现象相似,它们在量纲为1的单元坐标体系中有相同的模型且有相同的解.在量纲为1的单元坐标体系中具有相同结构模型的现象是同类现象,同类现象中特征数数值对应相等的现象才是相似现象
文档格式:PPT 文档大小:425KB 文档页数:73
为了研究线性方程组近似解的误差估计 和迭代法的收敛性,我们需要对R(n维 向量空间)中的向量或R∞中矩阵的“大 小”引入一种度量,—一向量和矩阵的范 数
文档格式:PDF 文档大小:517.67KB 文档页数:5
数值模拟了吸附时间、吸附压力、进气量、吸附床高度等工艺参数对微型氧氮分离过程的影响,分析了氧含量沿吸附床的演变过程,结果表明:微型氧氮分离过程为一种短周期的变压吸附循环;吸附压力越高,吸附阶段结束时氧气浓度波锋面穿透吸附床的距离越长:进气量越大,要求吸附床高度越大:吸附床长度缩短会导致吸附阶段氧气浓度锋面穿透吸附床;从开始到循环达到稳定状态需要大约15个循环:要想获得较高纯度的产品气,必须保证氧气浓度波锋面前沿不移出吸附床;传质阻力对过程的影响非常大,不能近似认为是瞬时平衡过程
文档格式:PDF 文档大小:778.74KB 文档页数:6
针对基于流态化技术利用硅粉直接氮化合成氮化硅粉的新工艺,建立了悬浮床内热过程的二维数学模型,并借助CFD商业软件FLUENT对悬浮床内热过程进行了数值模拟,分析了氮气速度、粉气比和氮化温度等因素对温度场和硅转化率的影响.结果表明,模拟计算值与实验值误差小于5%,该模型可以用来预测悬浮床内的热过程.在本文条件下,当以平均粒径2.7μm的硅粉为原料、氮化温度为1 380℃、氮化时间为54.5 s时,硅的转化率为22.5%.模型预测表明,如果将氮化温度升至1 450℃、氮化时间延长至7.1 min,那么硅转化率可达98.6%,氮化硅纯度达98%以上
首页上页5051525354555657下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有