点击切换搜索课件文库搜索结果(5413)
文档格式:DOC 文档大小:499KB 文档页数:7
第三章导数与微分 第一节导数的概念 思考题: 1.思考下列命题是否正确?如不正确举出反例 (1)若函数y=f(x)在点x处不可导,则f(x)在点x处一定不连续 答:命题错误.如y=|x|在x=0处不可导,但在此点连续 (2)若曲线y=f(x)处处有切线,则y=f(x)必处处可导 答:命题错误.如:y2=2x处处有切线,但在x=0处不可导
文档格式:PPT 文档大小:395KB 文档页数:18
Lagrange定理4y=f'(x+0x).4x给出了 函数在某区间上的增量与函数在区间内某点处的 导数之间的关系,为利用导数反过来研究函数的 性质或曲线的形态提供了一座桥梁。本节我们就 来讨论这方面的问题,主要介绍:单调性、极值 最值、凹凸、拐点和曲率
文档格式:PPT 文档大小:597.5KB 文档页数:20
曲线的凹凸与拐点 前面我们介绍了函数的单调性和极值,这对于 了解函数的性态很有帮助,但仅知道单调性还不 能比较全面地反映出曲线的性状,还须要考虑弯 曲方向
文档格式:PPT 文档大小:483KB 文档页数:17
定积分的分部积分法 一、分部积分公式 定积分也可以象不定积分一样进行分部积分,设函数u(x)、v(x)在区间[a,b]上具有连续导数,则
文档格式:PPT 文档大小:981.5KB 文档页数:33
实例:一块长方形的金属板,四个顶点的坐标是 1,1),(5,1),(1,3),(5,3).在坐标原点处有一个火 焰,它使金属板受热.假定板上任意一点处的温 度与该点到原点的距离成反比.在(3,2)处有一个 蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快到 达较凉快的地点? 问题的实质:应沿由热变冷变化最骤烈的方 向(即梯度方向)爬行
文档格式:PPT 文档大小:615KB 文档页数:23
微分法在几何上的应用 一、空间曲线的切线和法平面 定义设M是空间曲线L上的一个定点,M是L上的一个动点,当M*沿曲线L趋于M时,割线MM*的极限位置MT(如果极限存在)称为曲线L在M处的切线下面我们来导出空间曲线的切线方程
文档格式:PPT 文档大小:491KB 文档页数:26
隐函数的求导法则 一、一个方程的情形 1.F(x,y)=0 隐函数存在定理1设函数F(x,y)在点P(x,yo)的某一邻域内具有连续的偏导数,且F(x,yo)=0,F(x,yo)≠0,则方程F(x,y)=0在点P(x,yo)的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数y=f(x),它满足条件yo=f(x),并有
文档格式:PPT 文档大小:719.5KB 文档页数:43
第二章我们讨论了微分法,解决了曲线的切线、 法线及有关变化率问题。这一章我们来讨论导数的 应用问题
文档格式:PPT 文档大小:550.5KB 文档页数:32
极限运算法则 本节讨论极限的求法。利用极限的定义,从变 量的变化趋势来观察函数的极限,对于比较复杂 的函数难于实现。为此需要介绍极限的运算法则。 首先来介绍无穷小
文档格式:PPT 文档大小:389.5KB 文档页数:15
闭区间上连续函数的性质 闭区间上的连续函数有着十分优良的性质, 这些性质在函数的理论分析、研究中有着重 大的价值,起着十分重要的作用。下面我们 就不加证明地给出这些结论,好在这些结论 在几何意义是比较明显的
首页上页528529530531532533534535下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5413 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有