点击切换搜索课件文库搜索结果(628)
文档格式:PDF 文档大小:448.6KB 文档页数:3
以固载杂多酸盐TiSiW12O40/TiO2为多相催化剂,对以丁醛和乙二醇为原料合成丁醛乙二醇缩醛的反应条件进行了研究。实验表明TiSiW12O40)/TiO2是合成丁醛乙二醇缩醛的良好催化剂。较系统地研究了醛醇的物质的量的比、催化剂用量、反应时间诸因素对收率的影响,得到最佳反应条件为:n(丁醛):n(乙二醇)=1:1.5,催化剂用量为反应物料总质量的0.5%,环己烷为带水剂,反应时间1.0 h。上述条件下,丁醛乙二醇缩醛的收率可达81.9%
文档格式:PPT 文档大小:457KB 文档页数:28
12.1 羧酸的分类和命名 12.2 羧酸的结构 12.3 羧酸的制法 12.3.1 羧酸的工业合成 (1)烃的氧化 (2) 由一氧化碳、甲醇或醛制备 12.3.2 伯醇和醛的氧化 12.3.3 腈水解 12.3.4 Grignard 试剂与二氧化碳作用 12.3.5 酚酸的合成 12.4 羧酸的物理性质 12.5 羧酸的波谱性质 12.6 羧酸的化学性质 12.6.1 羧酸的酸性和极化效应 (1)羧酸的酸性 (2) 羧酸的结构与酸性的关系 12.6.2 羧酸衍生物的生成 (1) 酰氯的生成 (2) 酸酐的生成 (3) 酯的生成和酯化反应机理 (4) 酰胺的生成 12.6.3 羰基的还原反应 12.6.4 脱羧反应 12.6.5 二元酸的受热反应 12.6.6α–氢原子的反应 12.7 羟基酸
文档格式:PDF 文档大小:1.26MB 文档页数:5
应用热力学方法,对转炉炼钢前期高碳低温铁水条件下石灰石分解及CO2氧化作用进行了分析,推导出了CO2分压(pCO2)和高碳低温区域碳活度系数fC,%的求解方程.结果表明:石灰石中CaCO3在高碳低温的铁水面附近,其分解反应平衡温度比标准状态时低得多,随着吹炼过程中炉温上升其反应趋势增大,CO2在转炉炼钢吹炼初期与[C]、[Si]、[Mn]和Fe(l)的反应都可以自发进行,其排列次序与各元素被O2氧化的反应相同;在高碳低温铁水条件下pCO2值非常小,转炉炼钢初期pCO2在0.002 2~0.000 5pΘ左右,因此可以认为石灰石分解产生的CO2会全部参与铁水氧化反应
文档格式:PDF 文档大小:453.72KB 文档页数:6
建立了窑长为90m的氧化铝熟料回转窑的传热传质数学模型.采用化学动力学方法研究了烧结反应吸、放热对窑内温度分布的影响,提出了氧化铝与碳酸钠的反应为窑内熟料烧结反应结束的标志.结果表明,熟料反应约在距离窑头85 m处完全结束,各反应速率随温度的升高而增大,喷煤量的增加对预热、烧结带的影响大于其他各带区
文档格式:PPT 文档大小:4.66MB 文档页数:154
无机化学基本原理 一. 基础无机化学的理论框架 二. 原子结构与元素周期表 三. 化学键理论与分子结构 四. 晶体结构 五. 化学热力学初步 (一) 反应热效应计算(rHm ) (二) 反应自发性(rGm ,  ) (三) 反应极限(K) (四) 热力学函数、三大定律与热力学图形 六. 反应动力学初步 七. 酸碱平衡 八. 沉淀-溶解平衡 九. 配合物与配位平衡 十. 氧化还原反应与电化学 第1章 卤 素 第2章 氧族元素 第3章 氮族元素 第4章 碳族元素 第5章 硼族元素 第6章 铜、锌分族 第7章 d 区过渡元素
文档格式:PDF 文档大小:464.55KB 文档页数:4
计算了Mo-Si-B三元系中各化合物不同温度下标准生成自由焓和合成Mo5SiB2(T2相)反应在不同开始温度下的绝热温度及反应产物的熔化比.结果表明:用Mo、Si和B三种元素粉末混合物来原位合成Mo5SiB2在热力学上是完全可行的;合成Mo5SiB2不宜用燃烧合成的自蔓延模式,宜采用燃烧合成的热爆模式(原位反应热压工艺);反应的绝热温度及反应产物的熔化比与开始温度有关
文档格式:PPT 文档大小:975KB 文档页数:28
5-1 气-固相催化反应器的基本类型 5-2 反应器设计原则 5-3 催化反应器的数学模型
文档格式:PPT 文档大小:417KB 文档页数:24
一、 概述 二 、Ⅰ型变态反应 三、 Ⅱ型变态反应 四、 Ⅲ型变态反应 五、 Ⅳ型变态反应
文档格式:PPT 文档大小:365KB 文档页数:72
3.1 酶催化反应速度 3.2 底物浓度对酶促反应速度的影响 3.3 抑制剂对酶促反应速度的影响 3.4 其它因素对酶促反应速度的影响
文档格式:PDF 文档大小:1.15MB 文档页数:7
为了深入了解半焦与CO2的气化反应过程动力学,本文通过不同升温速率下的非等温实验,确定在不同阶段下富鼎半焦与CO2的气化机理.采用分段尝试法研究富鼎半焦与CO2气化反应过程动力学,确定反应过程前期与后期的机理函数分别为f(α)=(1-α)[1-ψln(1-α)]1/2和f(α)=(3/2)[(1-α)-1/3-1]-1,从而建立相应动力学模型,计算反应过程不同阶段的动力学参数.通过对不同阶段的动力学模型进行数据拟合,实验数据与模型吻合较好,相关系数都大于0.98.最后,根据求得的动力学参数,确定不同升温速率下活化能的补偿效应,即活化能与指前因子的关系式
首页上页5253545556575859下页末页
热门关键字
搜索一下,找到相关课件或文库资源 628 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有