点击切换搜索课件文库搜索结果(956)
文档格式:PDF 文档大小:169.12KB 文档页数:5
我们知道 Riemann 积分的几何意义是曲边梯形的面积. 为在欧氏空间空间 n R 上推广 Riemann 积分的理论, 我们必须把象长度, 面积和体积等概念推广到 n R 中的更一般的集上 去. 本章将要定义的 n R 上的 Lebesgue 测度就是长度, 面积和体积等概念推广
文档格式:PDF 文档大小:177.3KB 文档页数:6
教学目的 本节讨论直线上的 Riemann 积分(包括广义 Riemann 积分) 与 Lebesgue 积分之间的关系.同时给出 Riemann 可积函数的一个判别条件. 本节要点 用测度理论可以给出函数 Riemann 可积的一个简明的充要条 件. 本节的主要结果表明 Lebesgue 积分是 Riemann 积分的推广. 利用 Lebesgue 积分的性质, 可以解决一些 Riemann 积分的问题
文档格式:PDF 文档大小:217.28KB 文档页数:9
本节要点由R上的距离给出邻域,内点聚点的定义从而给出开集,闭 集的定义由开集生成一个o代数引入Bore集 Cantor集是一个重要的集,它 有一些很特别的性质.应使学生深刻理解本节介绍的各种集的概念并熟练应 用充分利用几何图形的直观,可以帮助理解本节的内容 本书在一般测度空间的框架下展开测度与积分的理论.但R上的Lebesgue测度与
文档格式:PDF 文档大小:3.45MB 文档页数:201
第一讲 调和函数的几何理论 第二讲 Fourier分析与调和函数的展开式 第三讲 扩充空间与球几何 第四讲 Lorentz 群 第五讲 球几何的基本定理 第六讲 非欧几何学 第七讲混合型偏微分方程 第八讲 形式Fourier 级数与广义函数
文档格式:PDF 文档大小:283.63KB 文档页数:9
本章首先讨论线性算子的有界性和有界线性算子的空间,然后叙述关于线性算子和线性 泛函的若干基本定理,它们是共鸣定理、开映射定理、闭图像定理以及 Hahn--Banach 延拓 定理(包括分析形式和几何形式). 这些定理在整个泛函分析理论中有着基本的重要作用. 本章还将介绍这些定理在 Fourie 分析、积分方程、微分方程适定问题以及逼近论和近似计 算等方面的应用
文档格式:PPT 文档大小:461KB 文档页数:14
希望系统有很快地响应速度。即在控制信号的作 用下,系统的输出能很快地随控制信号变化而变化。 系统分析的准确度取决于数学模型描述的真实程度
文档格式:PPT 文档大小:753.5KB 文档页数:58
4.1 活动安排问题 4.2 贪心算法的基本要素 4.3 最优装载 4.4 哈夫曼编码 4.5 单源最短路径 4.6 最小生成树 4.7 多机调度问题 4.8 贪心算法的理论基础
文档格式:PDF 文档大小:1.98MB 文档页数:164
《简明复分析》较系统地讲述了复变函数论的基本理论和方法。全书共分6章,内容包括:微积分,Cauchy积分定理与Cauchy积分公式,Weierstrass级数理论,Riemann映射定理,微分几何与Picard定理,多复变数函数浅引等。每章配有适量习题,供读者选用。《简明复分析(中国科学技术大学精品教材)》试图用近代数学的观点和方法处理复变函数内容,并强调数学的统一性。例如,用微分几何的初步知识,对Picard大、小定理给出简洁的证明;强调变换群的概念,利用Pompeiu公式给出一维a-问题的解,并用此来证明Mittag-Leffler定理与插值定理等,利用简单区域上的全纯自同构群证明Poincare定理;对多复变数函数做了简明的介绍。 第1章 微积分 第2章 Cauchy积分定理与Cauchy积分公式 第3章 Weierstrass级数理论 第4章 Riemann映射定理 第5章 微分几何与Picard定理 第6章 多复变数函数浅引
文档格式:PPT 文档大小:580.5KB 文档页数:108
只要函数 适当光滑连续,且关于 满足 条件,即存在常数 ,使得 由常微分方程理论知,初值问题的解必存在且 唯一
文档格式:PPT 文档大小:263KB 文档页数:24
一、研究有理插值问题的理论背景 二、有理函数插值的基本概念 三、有理插值问题的提出 四、研究的问题
首页上页5354555657585960下页末页
热门关键字
搜索一下,找到相关课件或文库资源 956 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有