点击切换搜索课件文库搜索结果(733)
文档格式:PDF 文档大小:164.44KB 文档页数:5
一.(本题共40分)给定有理数域上的多项式f(x)=x4+3x2+3 1.(本题5分)证明f(x)为中的不可约多项式 2.(本题5分)设a是f(x)在复数域C内的一个根.定义 Qa]= {ao +aa+a2a2}
文档格式:DOC 文档大小:48KB 文档页数:1
4.1.3线性空间的基与维数,向量的坐标 设V是数域K上的线性空间, 定义4.9基和维数 如果在V中存在n个向量a1,a2,…,an,满足 1)、a1,a2,…,an线性无关; 2)、V中任一向量在K上可表成a1,a2,…,an的线性组合, 则称a1,a2,,an为V的一组基。 基即是V的一个极大线性无关部分组
文档格式:DOC 文档大小:48KB 文档页数:1
4.1.3线性空间的基与维数,向量的坐标 设V是数域K上的线性空间, 定义4.9基和维数 如果在V中存在n个向量a1,a2,…,an,满足 1)、a1,a2,…,an线性无关; 2)、V中任一向量在K上可表成a1,a2,…,an的线性组合
文档格式:DOC 文档大小:242.5KB 文档页数:5
第六章6-4四维时空空间与辛空间 在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量f(a,B)=x1y1+x2y2+x3y3-x4y4(其中a=( x,x2,x3,x4)',B=(y1,y2,y3,y4)),称为四维时空空间的度量
文档格式:PDF 文档大小:4.62MB 文档页数:477
1.集合、常量与变量、函数概念 函数的定义,求定义域D,求函数表达式等(略)【考点】 2.函数的几种初等性质简述【考点】 (1)有界性:f(x)|≤M,0x∈XCD; (2)单调性;z
文档格式:DOC 文档大小:236.5KB 文档页数:4
2.5.2可逆矩阵,方阵的逆矩阵 1、可逆矩阵,方阵的逆矩阵的定义 定义设A是属于K上的一个n阶方阵,如果存在属于K上的n阶方阵B,使
文档格式:DOC 文档大小:242.5KB 文档页数:5
第六章6-4四维时空空间与辛空间 在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量f(a,B)=x1y1+x2y2+x3y3-x4y4(其中a=( x1,x2,x3,x4),B=(y1,y2,y3,y4),称为四维时空空间的度量 令 1000 0100 I= 0010 L000-1 在R内取定基
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 4-1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数 域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
文档格式:DOC 文档大小:226KB 文档页数:3
4.3.2线性映射的运算的定义与性质 定义线性映射的运算(加法与数域K上的数量乘法)设f:U→V,g:U→V为线性映射,定义f+g为f+g:U→V
首页上页5354555657585960下页末页
热门关键字
搜索一下,找到相关课件或文库资源 733 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有