网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(657)
《数字图象处理》 第五章(5-7) 图像几何处理
文档格式:PPT 文档大小:258.5KB 文档页数:43
图像处理算法中的几何处理是根据几何变换改变一幅图像中象素的位置和/或排列。前面讨论过的各种 处理都要根据特定的变换改变象素值的大小。而几何变换并不改变象素值的大小,它只是改变象素所处的位置。也就是说,将给定象素值的象素移到图像中一个新位置上。 由于几何变换是一种调整一幅图像中各类特征间空间关系的变换。实际上,一个不受约束的几何变换 ,可将图像中的一个点变换到图像中任意位置。也就是说,几何变换可将原图像变得面目全非。但实际使用的几何变换是一种保持变换前后图像局部特征相似性的变换
《理论力学》课程教学资源(PPT讲稿)第五章 质系动力学普遍定理(5.4)非惯性系中的动力学普遍定理
文档格式:PPT 文档大小:357.5KB 文档页数:9
质系动力学普遍定理 非惯性系中的普遍定理 5-4非惯性系中的动力学普遍定理 1.动量定理在任意非惯性系中对质点P;有其中Sne
西北工业大学:《建筑工程材料——土木工程材料》课程教学资源(PPT课件讲稿)曲顶柱体的体积
文档格式:PPT 文档大小:252KB 文档页数:5
2.曲顶柱体的体积 S S:=(,) 元素法 1任意分割区域D化整为零 2以平代曲
北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.2)矩阵的秩
文档格式:DOC 文档大小:87KB 文档页数:2
第二章2矩阵的秩 2.1.1矩阵的行秩与列秩、矩阵的转置 定义2.1矩阵的行秩与列秩。 一个矩阵A的行向量组的秩成为A的行秩它的列向量组的秩称为A的列秩。 命题2.1矩阵的行(列)初等变换不改变行(列)秩 证明只需证明行变换不该行秩。容易证明经过任意一种初等行变换,得到的行向 量组与原来的向量组线性等价,所以命题成立。证毕。 定义2.2矩阵的转置 把矩阵A的行与列互换之后,得到的矩阵A称为矩阵A的转置矩阵 命题2.2矩阵的行(列)初等变换不改变列(行)秩
北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.5.2)可逆矩阵方阵的逆矩阵
文档格式:DOC 文档大小:236.5KB 文档页数:4
2.5.2可逆矩阵,方阵的逆矩阵 1、可逆矩阵,方阵的逆矩阵的定义 定义设A是属于K上的一个n阶方阵,如果存在属于K上的n阶方阵B,使 BA= AB=E, 则称B是A的一个逆矩阵,此时A称为可逆矩阵。 2、群和环的定义 定义设A是一个非空集合。任意一个由A×A到A的映射就成为定义在A上的代数 运算
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.2 C,R,Q 上多项式的因式分解 9.2.1 复数域、实数域上多项式的因式分解
文档格式:DOC 文档大小:154KB 文档页数:2
9-2C,R,Q上多项式的因式分解 9.2.1复数域、实数域上多项式的因式分解 定理(高等代数基本定理)复数域C上任意一个次数≥1的多项式在C内必有一个 根。 这个定理的证明是放在复变函数课程中完成的。 由高等代数基本定理,我们得到C[x]内多项式的因式分解的重要结论: 命题C[x]内一个次数≥1的多项式p(x)是不可约多项式的充分必要条件为它是一次 多项式。 证明在任一数域K上的一次多项式f(x)都是K[x]内的不可约多项式(因为 (f(x),f(x)=1)。现在假设p(x)是C[x]内的一个不可约多项式
西北工业大学:《线性代数》课程教学资源(讲稿)第一章 n阶行列式(14-1.6)行列式的性质
文档格式:DOC 文档大小:225.5KB 文档页数:7
因为D对调两列得D2,相当于D对调两行得D 所以D2=D2=-D=-D 推论2D中某两行(列)元素对应相等→D=0 证因为对调此两行(列)后,D的形式不变 所以D=-D→D=0 例如,对于任意的a,bc,都有abc=0
吉林大学:《线性代数》课程教学资源(讲稿)第一章 多项式(1.1)多项式及整除性
文档格式:PDF 文档大小:98.28KB 文档页数:5
1.1多项式及整除性 定义1.1设Ω是一些数组成的集合,而且不只含一 个数,如果对于任意,它们的和、差、积、商(除数不为0)均含于Ω,则称Ω是一个数域 。 命题1.1每个数域都包含有理数域,即有理数域是最小的数域. QRC是三个最重要的数域,但数域并非仅此三种,如下面例子所示
吉林大学:《线性代数》课程教学资源(讲稿)第一章 多项式(1.4)因式分解
文档格式:PDF 文档大小:78.65KB 文档页数:2
1.4因式分解 定义4.1设p(x)是Q上的一个次数大于0的多项式如果 p(x)在[x]中没有真因子,则称是既约多项式(不可约 多项式或质式) 设p是一个既约多项式,f是任意多项式,则(p,f)是 p的因式,从而(p,f)=1或p=c(p,f),c∈因此p和f 二的关系是:(p,f)=1或plf. 命题4.1设p(x)是Q上的即约多项式,若p(x)整除 二多项式f(x)f(x)之积,则p(x)必能整除其中之一
同济大学:《高等数学》课程电子教案(PPT课件讲稿)第八章 多元函数微分学(8.8)方向导数与梯度
文档格式:PPT 文档大小:981.5KB 文档页数:33
方向导数与梯度 实例:一块长方形的金属板,四个顶点的坐标是 1,1),(5,1),(1,3),(5,3).在坐标原点处有一个火 焰,它使金属板受热.假定板上任意一点处的温 度与该点到原点的距离成反比.在(3,2)处有一个 蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快到 达较凉快的地点? 问题的实质:应沿由热变冷变化最骤烈的方 向(即梯度方向)爬行
首页
上页
54
55
56
57
58
59
60
61
下页
末页
热门关键字
生活美学
内脏学]
光通信
Excel数据处理
四位
说唱
数据交换
食品变质
人学原理
人文讲座
人体运动学
人体
全蝎
企业行为分析]
平衡态
模拟
金融计量
讲解
价值工程学
机械CAD/CAM应用
环境生物学
互联网开发与应用
互换定律
航天器
分析
方法
大脑
传媒经营管理
传递过程
出版技术
测试基础
北大光华]
PLC及应用
mysql数据库
C语言设计
DSP信号处理
CAN总线
《组织行为学》
《生物医学应用数学》
《公共艺术工程学研究》
搜索一下,找到相关课件或文库资源
657
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有