点击切换搜索课件文库搜索结果(779)
文档格式:PDF 文档大小:58.66KB 文档页数:14
一、曲线的切线、法线问题 对于两条相交的曲线L、L2,它们在交点 处的夹角定义为这条曲线在交点处的切线之间 的夹角(如下图)若记为θ,则有
文档格式:DOC 文档大小:111KB 文档页数:2
设E1,E2,…,E是线性空间V的一组基,在这组基下,V中每个向量都有确定 的坐标,而向量的坐标可以看成P元素,因此向量与它的坐标之间的对应实质 上就是V到P的一个映射.显然这个映射是单射与满射,换句话说,坐标给出了 线性空间V与P的一个双射.这个对应的重要性表现在它与运算的关系上
文档格式:PPT 文档大小:3.77MB 文档页数:133
§1 多元函数的基本概念 §2 偏导数 §3 全微分 §4 一元复合函数求导法则 §5 隐函数的求导方法 §6 多元函数的极值及其求法 §7 二重积分的概念与性质 §8 二重积分的计算法
文档格式:DOC 文档大小:116KB 文档页数:3
一、可逆矩阵的概念 在§2 我们看到,矩阵与复数相仿,有加、减、乘三种运算.矩阵的乘法是否 也和复数一样有逆运算呢?这就是本节所要讨论的问题. 这一节矩阵,如不特别声明,都是 nn 矩阵
文档格式:DOC 文档大小:192KB 文档页数:3
第六章6-2欧氏空间中特殊的线性变换 1.正交变换 设V是n维欧氏空间,A是V内一个线性变换如果对任意a,B∈V都有 (Aa, AB)=(a,B) 则称A是V内的一个正交变换 正交变换的四个等价表述 命题2.1A是n维欧氏空间V内的一个线性变换,则下列命题等价
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0在C内有非零解向量
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.V×V上的一个函数,如果满足 (i)(·,·)对第一个变量是线性的 (i)(a,B)=(B (ii1)ya∈V,(a,a)≥0,且(a,a)=0分a=0 则称(a,B)为向量a,B的内积,具有内积的复线性空间称为酉空间(欧氏空间在复线性 空间上的推广)
文档格式:DOC 文档大小:419.5KB 文档页数:5
第八章有理整数环 8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: (1)加法满足结合律; (2)加法满足加换律 (3)有一个数0,是对任意整数a,0+a=a; (4)对任意整数a,存在整数b,使b+a=0 (5)乘法满足结合律 (6)有一个数1,是对任意整数a,la=a
文档格式:DOC 文档大小:433.5KB 文档页数:5
9.1.7用形式微商判断多项式是否有重因式 定义9.10设f(x)=axn+a1x-+…+anx+an∈K[x],定义 f(x)=naxn-+(n-1)a1xn-2+…+an-∈[x] 称f(x)为f(x)的一阶形式微商
文档格式:PPT 文档大小:1.07MB 文档页数:51
第二节三重积分 一、三重积分的概念及性质 例.非均匀分布立体的质量 一设有空间立体g2,当Ω的质量是均匀分布时, 则的质量M=9的体密度×?的体积 若Ω的质量不是均匀分布的则不能上述方 式算质量M 设空间立体Ω.其质量非均匀分布,体密度 μ(x,y,z)连续,求的质量M
首页上页5859606162636465下页末页
热门关键字
搜索一下,找到相关课件或文库资源 779 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有