点击切换搜索课件文库搜索结果(7781)
文档格式:PDF 文档大小:2.85MB 文档页数:14
对近年来MOF材料去除水环境中重金属、有机物的相关研究进行了总结与评述。本篇是该主题的第2篇,主要对MOF材料去除水中有机污染物的相关研究进行总结和论述。研究表明,MOF材料含有大量开放性金属位点、路易斯酸碱位以及官能团,因而对染料、抗生素、农药、持久性有机污染物等均具有较高的吸附性能。氢键、π?π作用、疏水作用和静电引力是其吸附有机污染物的主要机制,部分MOF材料中较大的孔道结构也有利于大分子有机污染物的吸附;另外,部分MOF材料还具有优异的催化性能,能够作为类Fenton催化,光催化以及过硫酸盐活化的催化剂实现对有机污染物的催化降解,其中光催化反应中污染物的降解主要源于·O2?、·OH和h+的贡献;而在过硫酸盐体系中,·O2?、·OH、SO4·?和1O2是导致有机污染物分解的主要活性氧化物种。基于对先前研究的回顾,相信未来的研究领域包括但不限于以下方面:(1)进一步提高MOF在去除有机污染物方面的性能,并提高其可回收性;(2)开展新型MOF催化材料的制备及催化反应机理的研究;(3)研究MOF缺陷结构的调控,以开发具有更高吸附和催化性能的新型MOF材料;(4)研究新的框架材料,例如共价有机骨架(COFs)材料,并将其应用于污染物净化领域
文档格式:PDF 文档大小:882.28KB 文档页数:8
仿生扑翼飞行器是一类模仿鸟及昆虫通过机翼主动运动产生升力和推力的飞行器。因具有飞行效率高,机动性强、隐蔽性好等优点,扑翼飞行器近年来受到越来越多的关注和研究。小型扑翼飞行器由于其精巧的结构和可操作性,能够适应更复杂的环境,但也限制了其飞行负载能力和电池续航时间。在许多场景中,高质量和高功耗的传感器不再适用于扑翼飞行器。自然界生物得到的信息绝大多数是通过视觉途径获取的。视觉作为一个获取信息的有效途径,在扑翼飞行器的应用中有着不可替代的作用。视觉传感器具有质量轻、功耗低、图像信息丰富等优点,因此非常适合于搭载在扑翼飞行器上。随着微电子、图像处理等技术的不断发展,以扑翼飞行器为平台的视觉感知系统也取得了重要进展。本文首先介绍了国内外几款有代表性的扑翼飞行器的视觉感知系统,分为机载视觉感知系统和外部视觉感知系统两类;然后简述了三个系统关键技术即图像消抖技术、目标检测与识别技术、目标跟踪技术的发展现状,进而总结发现扑翼飞行器的视觉感知系统研究目前还处于起步阶段;最后指出图像消抖、机载实时处理、目标检测与识别、三维重建等可以作为扑翼飞行器视觉感知系统的未来研究方向
文档格式:DOC 文档大小:204.5KB 文档页数:15
2009年天津市高三年级综合能力测试(河东卷)_[河东区一模]2009年高三年级综合能力测试(河东卷)I(语文)
文档格式:PDF 文档大小:503.25KB 文档页数:7
针对目前铷矿提取工艺污染严重、资源综合利用率低的现状, 本文提出采用酸浸—溶剂萃取工艺提取铷云母矿中的铷.研究了浸出温度、硫酸浓度及浸出时间对铷浸出率的影响, 并借助X射线衍射、扫描电镜、能谱分析等手段, 研究了浸出过程中铷云母矿的物相转变.实验结果表明, 铷云母矿酸浸的最佳条件为浸出温度250 ℃、H2SO4质量浓度200 g·L-1、浸出时间1.5 h, 在此条件下铷浸出率达85.2%.X射线衍射图谱表明铷云母矿的主要矿物组成为石英、黑云母、白云母、正长石及钠长石.扫描电镜-能谱分析结果表明矿石中的铷主要以类质同象取代钾的位置分别存在于黑云母及白云母中.浸出过程中发生的主要反应为载铷云母的溶解.在萃取剂浓度1 mol·L-1、有机相与水相的体积比O/A = 3∶1、萃取级数为3级条件下进行逆流萃取实验, 萃余液中的铷质量浓度为0.003 g·L-1, 铷的萃取率达98%.在HCl浓度1 mol·L-1、相比O/A = 4∶1、反萃级数为2级条件下反萃负载铷的有机相, 铷反萃率达99%.以浸出渣为原料, 采用碱熔—中和沉淀工艺制备出了白炭黑产品, 实现了资源的综合利用.采用X射线衍射、红外光谱分析技术对白炭黑进行了表征, 结果表明产品成分为水合二氧化硅, 符合非晶态白炭黑的特征.化学定量分析结果表明白炭黑产品含SiO2质量分数91.65%, 所制备的白炭黑满足国家化工行业标准
文档格式:PDF 文档大小:915.79KB 文档页数:8
利用CMT5105电子万能试验机和HTM 16020电液伺服高速试验机对超高强热成形钢进行拉伸试验,应变速率范围为10-3~103 s-1,模拟热成形零件在不同应变速率下的碰撞情况.结果表明:在低应变速率阶段(10-3~10-1 s-1)实验钢的应变速率敏感性不高,随应变速率的升高,实验钢的强度和延伸率变化不大;在高应变速率阶段(100~103 s-1)实验钢具有高的应变速率敏感性,随应变速率的升高,实验钢的强度和延伸率都呈增大的趋势,并且抗拉强度的应变速率敏感性要大于屈服强度.这主要是由于在高应变速率阶段拉伸时产生的绝热温升现象和应变硬化现象共同作用造成的.实验钢颈缩后的延伸率随应变速率的增大而减小,主要是由于高应变速率下马氏体局部变形不均匀造成的.实验钢吸收冲击功的能力随应变速率的升高而增大,实验钢达到均匀延伸率时吸收冲击功的大小对应变速率更敏感.与低应变速率阶段相比,实验钢在高应变速率阶段的断口韧窝的平均直径更小,韧窝的深度更深,这与高应变速率阶段部分马氏体晶粒的碎化有关.通过扫描电镜和透射电镜观察发现,在高应变速率拉伸时晶粒有明显的拉长趋势,并且在应力集中的地方有一些微空洞的存在,应变速率为103 s-1时部分区域有碎化的现象
文档格式:PDF 文档大小:2.35MB 文档页数:6
基于密度泛函理论,对HCl气体在烧结矿表面的吸附机理进行模拟计算,并且通过实验研究了不同反应温度、烧结矿粒度和HCl气体流量条件下烧结矿表面吸附HCl气体的特性规律.结果表明:HCl在α-Fe2O3(001)表面的最大吸附能为-175.91 k J·mol-1,为化学吸附.Cl原子与基底表面的Fe原子发生反应结合成Cl-Fe键.吸附后Fe-O键长变短,Fe-O键能增加,结构更紧密.Cl原子与Fe原子结合成键后,削弱Cl原子与H原子的结合.温度对烧结矿吸附氯元素量的影响较大,随着温度升高,氯元素吸附量逐渐增多;随着烧结矿粒度增大,氯元素吸附量逐渐减少;随着HCl气体流量的增加,氯元素吸附量迅速增加
文档格式:PDF 文档大小:836.01KB 文档页数:14
人工智能特别是近几年深度学习的飞速发展,深刻的影响着军事领域,并赋予现代战争智能性、交叉性和破坏性的新特点。要想在军事对抗中取胜,不仅需要机器智能,同样需要人类智慧,能在军事作战中达到人机高度协同,是实现人与机器取长补短的重要途径,也是在愈发复杂的战争形势中取得胜利的关键。本文将军事对抗中人工智能的应用作为切入点,罗列了代表性国家在军事领域对人工智能的重视程度,从对抗策略和物联网三层架构两大角度对发展现状进行总结,同时指出在目前军事领域使用人工智能存在的不足,对人机融合智能在军事对抗中的发展趋势进行分析,并给出可能实现的技术方案,对未来的研究方向作出展望。如何实现高度的人机融合,从而获得“1+1>2”的良好效果,是人工智能在军事对抗中的下一步研究工作
文档格式:DOC 文档大小:115KB 文档页数:5
2009高考能力测试步步高语文基础训练(共20套)_2009高考能力测试步步高语文基础训练10
文档格式:PDF 文档大小:6.39MB 文档页数:8
设计了一种基于大柔度的柔性铰链,命名为SS-LEJ,利用等效法推导了其弯曲等效刚度的理论计算公式,通过设计实例的理论计算和ABAQUS仿真分析,验证理论计算公式的正确性.为了有效提升SS-LEJ的抗拉压性能,设计了4种不同位置和形状的拉力带的SST-LEJ,通过弯曲性能和抗拉压性能的有限元仿真分析,得出SST3-LEJ和SST4-LEJ为4种SST-LEJ当中整体性能较优的两种.将SST3-LEJ和SST4-LEJ与SS-LEJ、Inverted Bending-Orthogonal铰链进行了弯曲性能和抗拉压性能的比较,得出SST3-LEJ和SST4-LEJ的弯曲性能介于SS-LEJ和Inverted Bending-Orthogonal铰链之间,抗拉压性能优于SS-LEJ和Inverted Bending-Orthogonal铰链,说明SST3-LEJ和SST4-LEJ的整体性能较好,达到了预期的设计目的,为大柔度柔性铰链的设计提供了一种思路
文档格式:PDF 文档大小:4.91MB 文档页数:7
研究具有超疏水表面特性的疏水涂层实际防覆冰效果.首先理论分析了水滴在固体表面浸润性影响因素,利用不同硅烷水解缩合反应制备出低表面能的含氟硅树脂,之后引入分形理论在含氟硅树脂中添加二氧化硅微粒制备疏水涂层.观察掺杂微粒的涂层表面微观结构,并测试水滴在不同涂层表面的接触角;为直观分析涂层防覆冰效果,将不同涂层涂覆试验件后在结冰风洞中进行覆冰测试.结果显示掺混不同量级微粒的疏水涂层表面形成复合粗糙结构,有着更好的粗糙度;含氟硅树脂表面水滴接触角较普通硅树脂提升10°,含有不同量级粒径微粒的涂层表面水滴接触角较单一粒径微粒掺混的涂层提升近20°,达到超疏水表面效果;具有复合微观结构的疏水涂层涂覆的试验件在5 m·s-1和15 m·s-1的风速下较无涂层表面覆冰减少率分别达到35.6%和25.9%,较只有一级粗糙结构的表面有效防覆冰时间长,具有较好的防覆冰能力.结果表明本文设计的超疏水涂层达到超疏水表面效果,且具有较好的防覆冰性能
首页上页609610611612613614615616下页末页
热门关键字
搜索一下,找到相关课件或文库资源 7781 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有